Difference between revisions of "Forward circle minus"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
Let $\mathbb{T}$ be a [[time scale]] and let $p,q \in \mathcal{R}(\mathbb{T},\mathbb{C})$ be [[forward regressive function| (forward) regressive functions ]]. We define the (forward) circle minus operation $\ominus_{\mu}$  
+
Let $\mathbb{T}$ be a [[time scale]] and let $p,q \in \mathcal{R}(\mathbb{T},\mathbb{C})$ be [[forward regressive function| (forward) regressive functions ]]. We define the (forward) circle minus operation $\ominus_{\mu} \colon \mathbb{T} \rightarrow \mathbb{T}$ by
$$\ominus_h z = \dfrac{-z}{1+zh}.$$
+
$$\left( \ominus_{\mu} p \right)(t) = \dfrac{-p(t)}{1+p(t)\mu(t)}.$$
 +
Since the set of forward regressive functions [[forward regressive functions form a group|form a group]] $\left(\mathcal{R}(\mathbb{T},\mathbb{C}),\oplus_{\mu} \right)$ under [[circle plus]] with inverse operation  $\ominus_{\mu}$, we define
 +
$$p \ominus_{\mu} q = p \oplus_{\mu} (\ominus_{\mu} q).$$
  
 
=Properties=
 
=Properties=
 +
{{:Forward regressive functions form a group}}
 
{{:Circle minus inverse of circle plus}}
 
{{:Circle minus inverse of circle plus}}

Revision as of 23:35, 31 May 2016

Let $\mathbb{T}$ be a time scale and let $p,q \in \mathcal{R}(\mathbb{T},\mathbb{C})$ be (forward) regressive functions . We define the (forward) circle minus operation $\ominus_{\mu} \colon \mathbb{T} \rightarrow \mathbb{T}$ by $$\left( \ominus_{\mu} p \right)(t) = \dfrac{-p(t)}{1+p(t)\mu(t)}.$$ Since the set of forward regressive functions form a group $\left(\mathcal{R}(\mathbb{T},\mathbb{C}),\oplus_{\mu} \right)$ under circle plus with inverse operation $\ominus_{\mu}$, we define $$p \ominus_{\mu} q = p \oplus_{\mu} (\ominus_{\mu} q).$$

Properties

Forward regressive functions form a group

Theorem

The circle minus $\ominus_h$ is the inverse operation of the circle plus operation $\oplus_h$. Moreover, $$z \ominus_h w = z \oplus_h (\ominus_h w).$$

Proof

References