Difference between revisions of "Jackson logarithm"

From timescalewiki
Jump to: navigation, search
(References)
(Properties)
Line 3: Line 3:
  
 
=Properties=
 
=Properties=
*$\log_{\mathbb{T}} e_p(t,s) = \dfrac{(e_p(t,s))^{\Delta}}{e_p(t,s)} = p(t)$
+
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
*If $f$ $\Delta$-differentiable nonvanishing function then $e_{\log_{\mathbb{T}}f}(t,s)=\dfrac{f(t)}{f(s)}.$
+
<strong>Theorem:</strong> The following formula holds:
*For nonvanishing $\Delta$-differentiable functions $f,g$,
+
$$\log_{\mathbb{T}} e_p(t,s) = \dfrac{(e_p(t,s))^{\Delta}}{e_p(t,s)} = p(t).$$
$\log_{\mathbb{T}} f(t)g(t) = \log_{\mathbb{T}} f(t) \oplus \log_{\mathbb{T}} g(t).$
+
<div class="mw-collapsible-content">
*For nonvanishing $\Delta$-differentiable functions $f,g$,
+
<strong>Proof:</strong> █
$\log_{\mathbb{T}} \dfrac{f(t)}{g(t)} = \log_{\mathbb{T}} f(t) \ominus \log_{\mathbb{T}} g(t).$
+
</div>
 +
</div>
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> For nonvanishing $\Delta$-differentiable functions $f,g$,
 +
$$\log_{\mathbb{T}} \dfrac{f(t)}{g(t)} = \log_{\mathbb{T}} f(t) \ominus \log_{\mathbb{T}} g(t).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> If $f$ $\Delta$-differentiable nonvanishing function then
 +
$$e_{\log_{\mathbb{T}}f}(t,s)=\dfrac{f(t)}{f(s)}.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> For nonvanishing $\Delta$-differentiable functions $f,g$,
 +
$$\log_{\mathbb{T}} f(t)g(t) = \log_{\mathbb{T}} f(t) \oplus \log_{\mathbb{T}} g(t).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
  
 
=References=
 
=References=
 
[http://www.sciencedirect.com/science/article/pii/S0893965907001309 Jackson, Billy. The time scale logarithm. Appl. Math. Lett. 21 (2008), no. 3, 215--221.]
 
[http://www.sciencedirect.com/science/article/pii/S0893965907001309 Jackson, Billy. The time scale logarithm. Appl. Math. Lett. 21 (2008), no. 3, 215--221.]

Revision as of 22:00, 19 February 2016

This definition attempts to define the logarithm as the inverse of an exponential function. Let $\mathbb{T}$ be a time scale. Let $p \in \mathcal{R}(\mathbb{T},\mathbb{R})$ be regressive. Define $F \colon \mathcal{R}(\mathbb{T},\mathbb{R}) \rightarrow C_n^1(\mathbb{T},\mathbb{R})$ by $F(p)=e_p(t,s)$, where $C_n^1$ denotes nonvanishing continuously $\Delta$-differentible functions. Let $g \in C_n^1(\mathbb{T},\mathbb{R})$. Define $$\log_{\mathbb{T}}g(t)=\dfrac{g^{\Delta}(t)}{g(t)}.$$

Properties

Theorem: The following formula holds: $$\log_{\mathbb{T}} e_p(t,s) = \dfrac{(e_p(t,s))^{\Delta}}{e_p(t,s)} = p(t).$$

Proof:

Theorem: For nonvanishing $\Delta$-differentiable functions $f,g$, $$\log_{\mathbb{T}} \dfrac{f(t)}{g(t)} = \log_{\mathbb{T}} f(t) \ominus \log_{\mathbb{T}} g(t).$$

Proof:

Theorem: If $f$ $\Delta$-differentiable nonvanishing function then $$e_{\log_{\mathbb{T}}f}(t,s)=\dfrac{f(t)}{f(s)}.$$

Proof:

Theorem: For nonvanishing $\Delta$-differentiable functions $f,g$, $$\log_{\mathbb{T}} f(t)g(t) = \log_{\mathbb{T}} f(t) \oplus \log_{\mathbb{T}} g(t).$$

Proof:

References

Jackson, Billy. The time scale logarithm. Appl. Math. Lett. 21 (2008), no. 3, 215--221.