Difference between revisions of "Time scales footer"

From timescalewiki
Jump to: navigation, search
Line 15: Line 15:
 
<td><center>[[Isolated points|$\Huge\mathbb{T}_{\mathrm{iso}}$]]<br />
 
<td><center>[[Isolated points|$\Huge\mathbb{T}_{\mathrm{iso}}$]]<br />
 
[[Isolated points]]</center></td>
 
[[Isolated points]]</center></td>
<td><center>[[Square root of nonnegative integers|$\Huge\sqrt{\mathbb{N}_0}$]]<br />
+
</tr>
[[Square root of nonnegative integers|Square root numbers]]</center></td>
+
<tr>
 +
<td><center>[[Square root of nonnegative integers|$\Huge\sqrt[n]{\mathbb{N}_0}$]]<br />
 +
[[Nth root numbers|nth root numbers]]</center></td>
 +
<td><center>[[Evenly spaced intervals|$\Huge\mathbb{P}_{a,b}$]]<br />
 +
[[Evenly spaced intervals]]</center></td>
 
<td><center>[[Quantum q greater than 1|$\huge\overline{q^{\mathbb{Z}}}$]]<br />
 
<td><center>[[Quantum q greater than 1|$\huge\overline{q^{\mathbb{Z}}}$]]<br />
 
[[Quantum q greater than 1|Quantum, $q>1$]]</center></td>
 
[[Quantum q greater than 1|Quantum, $q>1$]]</center></td>
Line 23: Line 27:
 
<td><center>[[Closure of unit fractions|$\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}$]]<br />
 
<td><center>[[Closure of unit fractions|$\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}$]]<br />
 
[[Closure of unit fractions]]</center></td>
 
[[Closure of unit fractions]]</center></td>
 +
<td><center>[[Cantor set|$\Huge\mathcal{C}$]]<br />
 +
[[Cantor set]]</center></td>
 
</tr>
 
</tr>
 
</table>
 
</table>

Revision as of 01:32, 19 February 2016

Examples of time scales

$\Huge\mathbb{R}$
Real numbers
$\Huge\mathbb{Z}$
Integers
$\Huge{h\mathbb{Z}}$
Multiples of integers
$\Huge\mathbb{Z}^2$
Square integers
$\Huge\mathbb{H}$
Harmonic numbers
$\Huge\mathbb{T}_{\mathrm{iso}}$
Isolated points
$\Huge\sqrt[n]{\mathbb{N}_0}$
nth root numbers
$\Huge\mathbb{P}_{a,b}$
Evenly spaced intervals
$\huge\overline{q^{\mathbb{Z}}}$
Quantum, $q>1$
$\huge\overline{q^{\mathbb{Z}}}$
Quantum, $q<1$
$\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}$
Closure of unit fractions
$\Huge\mathcal{C}$
Cantor set