Difference between revisions of "Hilger pure imaginary"
Line 18: | Line 18: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
+ | {{:Hilger real part oplus Hilger imaginary part equals z}} |
Revision as of 20:02, 29 December 2015
Let $h>0$ be fixed. The Hilger pure imaginary numbers, $\mathring{\iota} \omega$, where $-\dfrac{\pi}{h} < \omega \leq \dfrac{\pi}{h}$ is defined by the formula $$\mathring{\iota} \omega = \dfrac{e^{2\pi i \omega}-1}{h},$$ where $i=\sqrt{-1}$.
Contents
Properties
Proposition: If $z \in \mathbb{C}_h$, the Hilger complex plane, then $\mathring{\iota} \mathrm{Im}_h(z) \in \mathbb{I}_h$, the Hilger circle.
Proof: █
Theorem: Let $h>0$ be fixed. If $-\dfrac{\pi}{h} < \omega \leq \dfrac{\pi}{h}$, then $$\left| \mathring{\iota} \omega \right|=\dfrac{4}{h^2} \sin^2 \left( \dfrac{\omega h}{2} \right).$$
Proof: █
Theorem
The following formula holds: $$z = \mathrm{Re}_h(z) \oplus_h \mathring{\iota} \mathrm{Im}_h(z),$$ where $\mathrm{Re}_h$ denotes the Hilger real part of $z$, $\mathrm{Im}_h$ denotes the Hilger imaginary part of $z$, $\oplus_h$ denotes the circle plus operation, and $\mathring{\iota}$ denotes the Hilger pure imaginary.