Difference between revisions of "Hilger pure imaginary"
From timescalewiki
Line 4: | Line 4: | ||
=Properties= | =Properties= | ||
+ | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
+ | <strong>Proposition:</strong> If $z \in \mathbb{C}_h$, the [[Hilger complex plane]], then $\mathring{\iota} \mathrm{Im}_h(z) \in \mathbb{I}_h$, the [[Hilger circle]]. | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
<strong>Theorem:</strong> Let $h>0$ be fixed. If $-\dfrac{\pi}{h} < \omega \leq \dfrac{\pi}{h}$, then | <strong>Theorem:</strong> Let $h>0$ be fixed. If $-\dfrac{\pi}{h} < \omega \leq \dfrac{\pi}{h}$, then |
Revision as of 19:49, 29 December 2015
Let $h>0$ be fixed. The Hilger pure imaginary numbers, $\mathring{\iota} \omega$, where $-\dfrac{\pi}{h} < \omega \leq \dfrac{\pi}{h}$ is defined by the formula $$\mathring{\iota} \omega = \dfrac{e^{2\pi i \omega}-1}{h},$$ where $i=\sqrt{-1}$.
Properties
Proposition: If $z \in \mathbb{C}_h$, the Hilger complex plane, then $\mathring{\iota} \mathrm{Im}_h(z) \in \mathbb{I}_h$, the Hilger circle.
Proof: █
Theorem: Let $h>0$ be fixed. If $-\dfrac{\pi}{h} < \omega \leq \dfrac{\pi}{h}$, then $$\left| \mathring{\iota} \omega \right|=\dfrac{4}{h^2} \sin^2 \left( \dfrac{\omega h}{2} \right).$$
Proof: █