Difference between revisions of "Marks-Gravagne-Davis Fourier transform"
From timescalewiki
(Created page with " =References= [http://web.ecs.baylor.edu/faculty/gravagnei/archived/Fourier.pdf]") |
|||
Line 1: | Line 1: | ||
− | + | Let $\mathbb{T}$ be a [[time scale]] and let $s \in \mathbb{T}$. Let $f \colon \mathbb{T} \rightarrow \mathbb{C}$ be a function. Define the Fourier transform of $f$ centered at $s$ by | |
+ | $$\mathscr{F}\{f\}(z;s)=\displaystyle\int_{\mathbb{T}} f(\tau)e_{\ominus \mathring{\iota} 2 \pi z}(\tau,s) \Delta \tau,$$ | ||
+ | where $\ominus$ denotes the [[circle minus]] operation and $\mathring{\iota}$ denotes the [[Hilger pure imaginary]]. | ||
=References= | =References= | ||
[http://web.ecs.baylor.edu/faculty/gravagnei/archived/Fourier.pdf] | [http://web.ecs.baylor.edu/faculty/gravagnei/archived/Fourier.pdf] |
Revision as of 20:17, 29 December 2015
Let $\mathbb{T}$ be a time scale and let $s \in \mathbb{T}$. Let $f \colon \mathbb{T} \rightarrow \mathbb{C}$ be a function. Define the Fourier transform of $f$ centered at $s$ by $$\mathscr{F}\{f\}(z;s)=\displaystyle\int_{\mathbb{T}} f(\tau)e_{\ominus \mathring{\iota} 2 \pi z}(\tau,s) \Delta \tau,$$ where $\ominus$ denotes the circle minus operation and $\mathring{\iota}$ denotes the Hilger pure imaginary.