Difference between revisions of "Backward graininess"
From timescalewiki
(Created page with "Let $\mathbb{T}$ be a time scale. The backward graininess function $\nu \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by $$\nu(t) = t-\rho(t).$$") |
|||
Line 1: | Line 1: | ||
Let $\mathbb{T}$ be a [[time scale]]. The backward graininess function $\nu \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by | Let $\mathbb{T}$ be a [[time scale]]. The backward graininess function $\nu \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by | ||
− | $$\nu(t) = t-\rho(t) | + | $$\nu(t) = t-\rho(t),$$ |
+ | where $\rho$ denotes the [[backward graininess]]. |
Latest revision as of 06:34, 23 December 2016
Let $\mathbb{T}$ be a time scale. The backward graininess function $\nu \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by $$\nu(t) = t-\rho(t),$$ where $\rho$ denotes the backward graininess.