Difference between revisions of "Derivation of delta exponential T=isolated points"

From timescalewiki
Jump to: navigation, search
(Created page with "For $t>s$, find $e_p$ by computing $$\begin{array}{ll} e_p(t,s) &= \exp \left( \displaystyle\int_s^t \dfrac{1}{\mu(\tau)} \log(1+\mu(\tau)p(\tau)) \Delta...")
 
Line 2: Line 2:
 
$$\begin{array}{ll}
 
$$\begin{array}{ll}
 
e_p(t,s) &= \exp \left( \displaystyle\int_s^t \dfrac{1}{\mu(\tau)} \log(1+\mu(\tau)p(\tau)) \Delta \tau \right) \\
 
e_p(t,s) &= \exp \left( \displaystyle\int_s^t \dfrac{1}{\mu(\tau)} \log(1+\mu(\tau)p(\tau)) \Delta \tau \right) \\
&= \exp \left( \displaystyle\sum_{k=\pi(s)+1}^{\pi(t)} \log(1+\mu(t_k)p(t_k) \right) \\
+
&= \exp \left( \displaystyle\sum_{k=\pi(s)}^{\pi(t)-1} \log(1+\mu(t_k)p(t_k) \right) \\
&= \displaystyle\prod_{k=\pi(s)+1}^{\pi(t)} 1+\mu(t_k)p(t_k).
+
&= \displaystyle\prod_{k=\pi(s)}^{\pi(t)-1} 1+\mu(t_k)p(t_k).
 
\end{array}$$
 
\end{array}$$

Revision as of 23:27, 9 June 2015

For $t>s$, find $e_p$ by computing $$\begin{array}{ll} e_p(t,s) &= \exp \left( \displaystyle\int_s^t \dfrac{1}{\mu(\tau)} \log(1+\mu(\tau)p(\tau)) \Delta \tau \right) \\ &= \exp \left( \displaystyle\sum_{k=\pi(s)}^{\pi(t)-1} \log(1+\mu(t_k)p(t_k) \right) \\ &= \displaystyle\prod_{k=\pi(s)}^{\pi(t)-1} 1+\mu(t_k)p(t_k). \end{array}$$