Difference between revisions of "Bilateral Laplace transform"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 
Let $\mathbb{T}$ be a [[time scale]]. The Bilateral Laplace transform of a function $f \colon \mathbb{T} \rightarrow \mathbb{T}$ centered at $s$ is given by
 
Let $\mathbb{T}$ be a [[time scale]]. The Bilateral Laplace transform of a function $f \colon \mathbb{T} \rightarrow \mathbb{T}$ centered at $s$ is given by
$$F(z,s)=\displaystyle\int_{-\infty}^{\infty} f(t)e_{\ominus z}(\sigma(t),s).$$
+
$$F(z,s)=\displaystyle\int_{-\infty}^{\infty} f(t)e_{\ominus z}(\sigma(t),s) \Delta t.$$
 
This integral is clearly a generalization of the [[Laplace transform]].
 
This integral is clearly a generalization of the [[Laplace transform]].
  
 
=References=
 
=References=
 
[http://marksmannet.com/RobertMarks/REPRINTS/2010-BilateralLaplaceTransformsOnTimeScales.pdf]
 
[http://marksmannet.com/RobertMarks/REPRINTS/2010-BilateralLaplaceTransformsOnTimeScales.pdf]

Revision as of 15:41, 22 September 2016

Let $\mathbb{T}$ be a time scale. The Bilateral Laplace transform of a function $f \colon \mathbb{T} \rightarrow \mathbb{T}$ centered at $s$ is given by $$F(z,s)=\displaystyle\int_{-\infty}^{\infty} f(t)e_{\ominus z}(\sigma(t),s) \Delta t.$$ This integral is clearly a generalization of the Laplace transform.

References

[1]