Difference between revisions of "Isolated points"
From timescalewiki
Line 31: | Line 31: | ||
|} | |} | ||
+ | {| class="wikitable" | ||
+ | |+$\mathbb{T}=\mathbb{T}_{\mathrm{iso}}$ | ||
+ | |- | ||
+ | |Generic element $t \in \mathbb{T}$: | ||
+ | |for some $n \in \mathbb{Z}$, $t=t_n$ | ||
+ | |- | ||
+ | |[[Forward jump]]: | ||
+ | |$\sigma(t_n)=t_{n+1}$ | ||
+ | |[[Derivation of forward jump for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Forward graininess]]: | ||
+ | |$\mu(t_n)=t_{n+1}-t_n$ | ||
+ | |[[Derivation of forward graininess for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Backward jump]]: | ||
+ | |$\rho(t_n)=t_{n-1}$ | ||
+ | |[[Derivation of backward jump for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Backward graininess]]: | ||
+ | |$\nu(t_n)=t_{n}-t_{n-1}$ | ||
+ | |[[Derivation of backward graininess for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Delta derivative | $\Delta$-derivative]] | ||
+ | |$f^{\Delta}(t_n)=\dfrac{f(t_{n+1})-f(t_n)}{t_{n+1}-t_n}$ | ||
+ | |[[Derivation of delta derivative for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Nabla derivative | $\nabla$-derivative]] | ||
+ | |$f^{\nabla}(t_n)=\dfrac{f(t_n)-f(t_{n-1})}{t_{n}-t_{n-1}}$ | ||
+ | |[[Derivation of nabla derivative for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Delta integral | $\Delta$-integral]] | ||
+ | |$\displaystyle\int_{s}^{t} f(\tau) \Delta \tau=\displaystyle\sum_{k=\pi(s)}^{\pi(t)-1} \mu(t_k)f(t_k)$ | ||
+ | |[[Derivation of delta integral for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Nabla integral | $\nabla$-integral]] | ||
+ | |$\displaystyle\int_s^t f(\tau) \nabla \tau=\displaystyle\sum_{k=\pi(\sigma(s))}^{\pi(t)} \mu(t_k)f(t_k)$ | ||
+ | |[[Derivation of nabla integral for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Delta hk|$h_k(t,s)$]] | ||
+ | |$h_k(t,s)=$ | ||
+ | |[[Derivation of delta hk for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Nabla hk|$\hat{h}_k(t,s)$]] | ||
+ | |$\hat{h}_k(t,s)=$ | ||
+ | |[[Derivation of nabla hk for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Delta gk|$g_k(t,s)$]] | ||
+ | |$g_k(t,s)=$ | ||
+ | |[[Derivation of delta gk for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Nabla gk|$\hat{g}_k(t,s)$]] | ||
+ | |$\hat{g}_k(t,s)=$ | ||
+ | |[[Derivation of nabla gk for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Delta exponential | $e_p(t,s)$]] | ||
+ | |$e_p(t,s)=$ | ||
+ | |[[Derivation of delta exponential T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Nabla exponential | $\hat{e}_p(t,s)$]] | ||
+ | |$\hat{e}_p(t,s)=$ | ||
+ | |[[Derivation of nabla exponential T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Gaussian bell]] | ||
+ | |$\mathbf{E}(t)=$ | ||
+ | |[[Derivation of Gaussian bell for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Delta sine | $\mathrm{sin}_p(t,s)=$]] | ||
+ | |$\sin_p(t,s)=$ | ||
+ | |[[Derivation of delta sin sub p for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |$\mathrm{\sin}_1(t,s)$ | ||
+ | |$\sin_1(t,s)=$ | ||
+ | |[[Derivation of delta sin sub 1 for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sine|$\widehat{\sin}_p(t,s)$]] | ||
+ | |$\widehat{\sin}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sine sub p for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosine|$\mathrm{\cos}_p(t,s)$]] | ||
+ | |$\cos_p(t,s)=$ | ||
+ | |[[Derivation of delta cos sub p for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |$\mathrm{\cos}_1(t,s)$ | ||
+ | |$\cos_1(t,s)=$ | ||
+ | |[[Derivation of delta cos sub 1 for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosine|$\widehat{\cos}_p(t,s)$]] | ||
+ | |$\widehat{\cos}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cos sub 1 for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Delta sinh|$\sinh_p(t,s)$]] | ||
+ | |$\sinh_p(t,s)=$ | ||
+ | |[[Derivation of delta sinh sub p for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sinh|$\widehat{\sinh}_p(t,s)$]] | ||
+ | |$\widehat{\sinh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sinh sub p for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosh|$\cosh_p(t,s)$]] | ||
+ | |$\cosh_p(t,s)=$ | ||
+ | |[[Derivation of delta cosh sub p for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosh|$\widehat{\cosh}_p(t,s)$]] | ||
+ | |$\widehat{\cosh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cosh sub p for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Gamma function]] | ||
+ | |$\Gamma_{\mathbb{T}_{\mathrm{iso}}}(x,s)=$ | ||
+ | |[[Derivation of gamma function for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Euler-Cauchy logarithm]] | ||
+ | |$L(t,s)=$ | ||
+ | |[[Derivation of Euler-Cauchy logarithm for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Bohner logarithm]] | ||
+ | |$L_p(t,s)=$ | ||
+ | |[[Derivation of the Bohner logarithm for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Jackson logarithm]] | ||
+ | |$\log_{\mathbb{T}_{\mathrm{iso}}} g(t)=$ | ||
+ | |[[Derivation of the Jackson logarithm for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Mozyrska-Torres logarithm]] | ||
+ | |$L_{\mathbb{T}_{\mathrm{iso}}}(t)=$ | ||
+ | |[[Derivation of the Mozyrska-Torres logarithm for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Laplace transform]] | ||
+ | |$\mathscr{L}_{\mathbb{T}_{\mathrm{iso}}}\{f\}(z;s)=$ | ||
+ | |[[Derivation of Laplace transform for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Hilger circle]] | ||
+ | | | ||
+ | |[[Derivation of Hilger circle for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |} | ||
== Examples of time scales of isolated points == | == Examples of time scales of isolated points == |
Revision as of 23:01, 9 June 2015
Let $\mathbb{T}$ be a time scale. We say that $\mathbb{T}$ is a time scale of isolated points if there exists $\epsilon > 0$ such that for all $t \in \mathbb{T}$, $\mu(t) \geq \epsilon$. Let $\mathbb{T}=\{\ldots,t_{-1},t_0,t_1,\ldots\}$ be a time scale of isolated points with $t_k > t_n$ iff $k>n$. Define the bijection $\pi \colon \mathbb{T} \rightarrow \mathbb{Z}$, $\pi(t_k)=k$.
Generic element $t\in \mathbb{T}$: | For some $n \in \mathbb{Z}, t=t_n$ |
Jump operator: | $\sigma(t)=\sigma(t_n)=t_{n+1}$ |
Graininess operator: | $\mu(t)=\mu(t_n)=t_{n+1}-t_n$ |
$\Delta$-derivative: | $f^{\Delta}(t)=f^{\Delta}(t_n) = \dfrac{f(t_{n+1})-f(t_n)}{t_{n+1}-t_n}$ |
$\Delta$-integral: | $$\displaystyle\int_{t_s}^{t_n} f(\tau) \Delta \tau = \left\{ \begin{array}{ll} \displaystyle\sum_{k=s}^{n-1} \mu(t_k)f(t_k) &; n > s \\ 0 &; n=s \\ -\displaystyle\sum_{k=n}^{s-1} \mu(t_k) f(t_k) &; n < s \end{array} \right. $$ |
Exponential function: | If $t_n > t_s$, $$\begin{array}{ll} e_p(t_n,t_s) &= \exp \left( \displaystyle\int_{t_s}^{t_n} \dfrac{1}{\mu(\tau)} \log(1 + p(\tau)) \Delta \tau \right) \\ &= \exp \left( \displaystyle\sum_{k=s}^{n-1} \log(1+\mu(t_k)p(t_k)) \right) \\ &= \displaystyle\prod_{k=s}^{n-1} \left( 1+\mu(t_k)p(t_k) \right) \\ \end{array}$$ |
Generic element $t \in \mathbb{T}$: | for some $n \in \mathbb{Z}$, $t=t_n$ | |
Forward jump: | $\sigma(t_n)=t_{n+1}$ | derivation |
Forward graininess: | $\mu(t_n)=t_{n+1}-t_n$ | derivation |
Backward jump: | $\rho(t_n)=t_{n-1}$ | derivation |
Backward graininess: | $\nu(t_n)=t_{n}-t_{n-1}$ | derivation |
$\Delta$-derivative | $f^{\Delta}(t_n)=\dfrac{f(t_{n+1})-f(t_n)}{t_{n+1}-t_n}$ | derivation |
$\nabla$-derivative | $f^{\nabla}(t_n)=\dfrac{f(t_n)-f(t_{n-1})}{t_{n}-t_{n-1}}$ | derivation |
$\Delta$-integral | $\displaystyle\int_{s}^{t} f(\tau) \Delta \tau=\displaystyle\sum_{k=\pi(s)}^{\pi(t)-1} \mu(t_k)f(t_k)$ | derivation |
$\nabla$-integral | $\displaystyle\int_s^t f(\tau) \nabla \tau=\displaystyle\sum_{k=\pi(\sigma(s))}^{\pi(t)} \mu(t_k)f(t_k)$ | derivation |
$h_k(t,s)$ | $h_k(t,s)=$ | derivation |
$\hat{h}_k(t,s)$ | $\hat{h}_k(t,s)=$ | derivation |
$g_k(t,s)$ | $g_k(t,s)=$ | derivation |
$\hat{g}_k(t,s)$ | $\hat{g}_k(t,s)=$ | derivation |
$e_p(t,s)$ | $e_p(t,s)=$ | derivation |
$\hat{e}_p(t,s)$ | $\hat{e}_p(t,s)=$ | derivation |
Gaussian bell | $\mathbf{E}(t)=$ | derivation |
$\mathrm{sin}_p(t,s)=$ | $\sin_p(t,s)=$ | derivation |
$\mathrm{\sin}_1(t,s)$ | $\sin_1(t,s)=$ | derivation |
$\widehat{\sin}_p(t,s)$ | $\widehat{\sin}_p(t,s)=$ | derivation |
$\mathrm{\cos}_p(t,s)$ | $\cos_p(t,s)=$ | derivation |
$\mathrm{\cos}_1(t,s)$ | $\cos_1(t,s)=$ | derivation |
$\widehat{\cos}_p(t,s)$ | $\widehat{\cos}_p(t,s)=$ | derivation |
$\sinh_p(t,s)$ | $\sinh_p(t,s)=$ | derivation |
$\widehat{\sinh}_p(t,s)$ | $\widehat{\sinh}_p(t,s)=$ | derivation |
$\cosh_p(t,s)$ | $\cosh_p(t,s)=$ | derivation |
$\widehat{\cosh}_p(t,s)$ | $\widehat{\cosh}_p(t,s)=$ | derivation |
Gamma function | $\Gamma_{\mathbb{T}_{\mathrm{iso}}}(x,s)=$ | derivation |
Euler-Cauchy logarithm | $L(t,s)=$ | derivation |
Bohner logarithm | $L_p(t,s)=$ | derivation |
Jackson logarithm | $\log_{\mathbb{T}_{\mathrm{iso}}} g(t)=$ | derivation |
Mozyrska-Torres logarithm | $L_{\mathbb{T}_{\mathrm{iso}}}(t)=$ | derivation |
Laplace transform | $\mathscr{L}_{\mathbb{T}_{\mathrm{iso}}}\{f\}(z;s)=$ | derivation |
Hilger circle | derivation |