Difference between revisions of "Mozyrska-Torres logarithm"
From timescalewiki
(→References) |
|||
Line 10: | Line 10: | ||
=References= | =References= | ||
− | + | {{PaperReference|The Natural Logarithm on Time Scales|2009|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=findme|next=findme}}: page 1 | |
+ | |||
+ | [[Category:SpecialFunction]] |
Revision as of 20:52, 17 September 2016
Let $\mathbb{T}$ be a time scale. For $t \in \mathbb{T} \cap (0,\infty)$, define $$L_{\mathbb{T}}(t) = \displaystyle\int_1^t \dfrac{1}{\tau} \Delta \tau.$$
Properties
- $L^{\Delta}_{\mathbb{T}}(t) = \dfrac{1}{t}$
- $L_{\mathbb{T}}(1)=0$
- $L_{\mathbb{R}}(t)=\log(t)$
- $L_{\mathbb{T}}(\cdot)$ is increasing and continuous
- $L_{\mathbb{T}}(\sigma(t))=L_{\mathbb{T}}(t)+\mu(t)L_{\mathbb{T}}^{\Delta}(t)=L_{\mathbb{T}}(t)+\dfrac{\mu(t)}{t}$
References
Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2009)... (previous)... (next): page 1