Difference between revisions of "Jackson logarithm"
Line 9: | Line 9: | ||
*For nonvanishing $\Delta$-differentiable functions $f,g$, | *For nonvanishing $\Delta$-differentiable functions $f,g$, | ||
$\log_{\mathbb{T}} \dfrac{f(t)}{g(t)} = \log_{\mathbb{T}} f(t) \ominus \log_{\mathbb{T}} g(t).$ | $\log_{\mathbb{T}} \dfrac{f(t)}{g(t)} = \log_{\mathbb{T}} f(t) \ominus \log_{\mathbb{T}} g(t).$ | ||
+ | |||
+ | =References= | ||
+ | [http://www.sciencedirect.com/science/article/pii/S0893965907001309 Jackson, Billy . The time scale logarithm. Appl. Math. Lett. 21 (2008), no. 3, 215--221.] |
Revision as of 00:22, 22 May 2015
This definition attempts to define the logarithm as the inverse of an exponential function. Let $\mathbb{T}$ be a time scale. Let $p \in \mathcal{R}(\mathbb{T},\mathbb{R})$ be regressive. Define $F \colon \mathcal{R}(\mathbb{T},\mathbb{R}) \rightarrow C_n^1(\mathbb{T},\mathbb{R})$ by $F(p)=e_p(t,s)$, where $C_n^1$ denotes nonvanishing continuously $\Delta$-differentible functions. Let $g \in C_n^1(\mathbb{T},\mathbb{R})$. Define $$\log_{\mathbb{T}}g(t)=\dfrac{g^{\Delta}(t)}{g(t)}.$$
Properties
- $\log_{\mathbb{T}} e_p(t,s) = \dfrac{(e_p(t,s))^{\Delta}}{e_p(t,s)} = p(t)$
- If $f$ $\Delta$-differentiable nonvanishing function then $e_{\log_{\mathbb{T}}f}(t,s)=\dfrac{f(t)}{f(s)}.$
- For nonvanishing $\Delta$-differentiable functions $f,g$,
$\log_{\mathbb{T}} f(t)g(t) = \log_{\mathbb{T}} f(t) \oplus \log_{\mathbb{T}} g(t).$
- For nonvanishing $\Delta$-differentiable functions $f,g$,
$\log_{\mathbb{T}} \dfrac{f(t)}{g(t)} = \log_{\mathbb{T}} f(t) \ominus \log_{\mathbb{T}} g(t).$
References
Jackson, Billy . The time scale logarithm. Appl. Math. Lett. 21 (2008), no. 3, 215--221.