Difference between revisions of "Expected value"
(→Properties) |
|||
Line 5: | Line 5: | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
<strong>Theorem:</strong> The following formula holds: | <strong>Theorem:</strong> The following formula holds: | ||
− | $$\mathrm{E}_{\mathbb{T}}(X^k)=\displaystyle\ | + | $$\mathrm{E}_{\mathbb{T}}(X^k)=\displaystyle\int_{-\infty}^{\infty} k! h_k(t,0)f(t) \Delta t.$$ |
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ |
Revision as of 05:29, 26 April 2015
Let $\mathbb{T}$ be a time scale. Let $X$ be a random variable with probability density function $f \colon \mathbb{T} \rightarrow \mathbb{R}$. The expected value of $X$ is given by $$\mathrm{E}_{\mathbb{T}}(X^k)=\displaystyle\int_{-\infty}^{\infty} k! h_k(t,0)f(t) \Delta t.$$
Contents
Properties
Theorem: The following formula holds: $$\mathrm{E}_{\mathbb{T}}(X^k)=\displaystyle\int_{-\infty}^{\infty} k! h_k(t,0)f(t) \Delta t.$$
Proof: █
Example
Theorem
Let $X$ have the uniform distribution on $[a,b] \cap \mathbb{T}$. Then, $$\mathrm{E}_{\mathbb{T}}(X) = \dfrac{h_2(\sigma(b),a)}{\sigma(b)-a}+a,$$ where $h_2$ denotes the delta hk and $\sigma$ denotes the forward jump.
Proof
References
Theorem
If $X$ is a random variable with the exponential distribution with parameter $\lambda$, then $$\mathrm{E}_{\mathbb{T}}(X)=\dfrac{1}{\lambda}.$$
Proof
References
Theorem: Let $X$ have the gamma distribution on $\mathbb{T}$. Then $$\mathrm{E}_{\mathbb{T}}(X)=\dfrac{k}{\lambda}.$$
Proof: █
References
Probability theory on time scales and applications to finance and inequalities by Thomas Matthews