Difference between revisions of "Exponential distribution"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 +
__NOTOC__
 
Let $\mathbb{T}$ be a time scale. Let $\lambda > 0$ and $\ominus \lambda$ be [[positively mu regressive | positively $\mu$-regressive]] constant functions and let $t \in \mathbb{T}$. The exponential distribution is given by the [[probability density function]]
 
Let $\mathbb{T}$ be a time scale. Let $\lambda > 0$ and $\ominus \lambda$ be [[positively mu regressive | positively $\mu$-regressive]] constant functions and let $t \in \mathbb{T}$. The exponential distribution is given by the [[probability density function]]
 
$$f(t) = \left\{ \begin{array}{ll}
 
$$f(t) = \left\{ \begin{array}{ll}

Revision as of 14:06, 28 January 2023

Let $\mathbb{T}$ be a time scale. Let $\lambda > 0$ and $\ominus \lambda$ be positively $\mu$-regressive constant functions and let $t \in \mathbb{T}$. The exponential distribution is given by the probability density function $$f(t) = \left\{ \begin{array}{ll} -(\ominus \lambda)(t) e_{\ominus \lambda}(t,0) &; t \geq 0 \\ 0 &; t<0. \end{array} \right.$$

Properties

Theorem

If $X$ is a random variable with the exponential distribution with parameter $\lambda$, then $$\mathrm{E}_{\mathbb{T}}(X)=\dfrac{1}{\lambda}.$$

Proof

References

Theorem

If $X$ with a random variable with the exponential distribution with parameter $\lambda$, then, $$\mathrm{Var}_{\mathbb{T}}(X)=\dfrac{1}{\lambda^2},$$ where $\mathrm{Var}$ denotes variance.

Proof

References

References

[1]

Probability distributions

Uniform distributionExponential distributionGamma distribution