Difference between revisions of "Expected value"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 
Let $\mathbb{T}$ be a [[time scale]]. Let $X$ be a random variable with [[probability density function]] $f \colon \mathbb{T} \rightarrow \mathbb{R}$. The expected value of $X$ is given by
 
Let $\mathbb{T}$ be a [[time scale]]. Let $X$ be a random variable with [[probability density function]] $f \colon \mathbb{T} \rightarrow \mathbb{R}$. The expected value of $X$ is given by
$$\mathbb{E}_{\mathbb{T}}(X) = \dfrac{dC_f}{dz}(0),$$
+
$$\mathrm{E}_{\mathbb{T}}(X) = \dfrac{dC_f}{dz}(0),$$
 
where $C_f$ is the [[cumulant generating function]] of $f$.
 
where $C_f$ is the [[cumulant generating function]] of $f$.
  
Line 6: Line 6:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> The following formula holds:
 
<strong>Theorem:</strong> The following formula holds:
$$\mathbb{E}_{\mathbb{T}}(X^k)=\displaystyle\int_0^{\infty} k! h_k(t,0)f(t) \Delta t.$$
+
$$\mathrm{E}_{\mathbb{T}}(X^k)=\displaystyle\int_0^{\infty} k! h_k(t,0)f(t) \Delta t.$$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
=Example=
 +
{{:Expected value of uniform distribution}}
  
 
=References=
 
=References=
 
[https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/29595/Matthews_2011.pdf?sequence=1 Probability theory on time scales and applications to finance and inequalities by Thomas Matthews]
 
[https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/29595/Matthews_2011.pdf?sequence=1 Probability theory on time scales and applications to finance and inequalities by Thomas Matthews]

Revision as of 22:01, 14 April 2015

Let $\mathbb{T}$ be a time scale. Let $X$ be a random variable with probability density function $f \colon \mathbb{T} \rightarrow \mathbb{R}$. The expected value of $X$ is given by $$\mathrm{E}_{\mathbb{T}}(X) = \dfrac{dC_f}{dz}(0),$$ where $C_f$ is the cumulant generating function of $f$.

Properties

Theorem: The following formula holds: $$\mathrm{E}_{\mathbb{T}}(X^k)=\displaystyle\int_0^{\infty} k! h_k(t,0)f(t) \Delta t.$$

Proof:

Example

Theorem

Let $X$ have the uniform distribution on $[a,b] \cap \mathbb{T}$. Then, $$\mathrm{E}_{\mathbb{T}}(X) = \dfrac{h_2(\sigma(b),a)}{\sigma(b)-a}+a,$$ where $h_2$ denotes the delta hk and $\sigma$ denotes the forward jump.

Proof

References

References

Probability theory on time scales and applications to finance and inequalities by Thomas Matthews