Difference between revisions of "Relationship between nabla exponential and delta exponential"
From timescalewiki
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
<strong>[[Relationship between nabla exponential and delta exponential|Theorem]]:</strong> If $p$ is [[continuous]] and $\nu$-regressive then | <strong>[[Relationship between nabla exponential and delta exponential|Theorem]]:</strong> If $p$ is [[continuous]] and $\nu$-regressive then | ||
− | $$\hat{e}_p(t,s)=e_{\frac{ | + | $$\hat{e}_p(t,s)=e_{\frac{p^{\sigma}}{1-p^{\sigma}\nu}}(t,s)=e_{\ominus(-p^{\sigma})}(t,s),$$ |
− | where $\hat{e}$ denotes the [[nabla exponential|$\nabla$-exponential]] and $e_p$ denotes the [[Delta exponential|$\Delta$-exponential]]. | + | where $\hat{e}_p$ denotes the [[nabla exponential|$\nabla$-exponential]] and $e_p$ denotes the [[Delta exponential|$\Delta$-exponential]]. |
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 09:26, 12 April 2015
Theorem: If $p$ is continuous and $\nu$-regressive then $$\hat{e}_p(t,s)=e_{\frac{p^{\sigma}}{1-p^{\sigma}\nu}}(t,s)=e_{\ominus(-p^{\sigma})}(t,s),$$ where $\hat{e}_p$ denotes the $\nabla$-exponential and $e_p$ denotes the $\Delta$-exponential.
Proof: █