Difference between revisions of "Relationship between nabla exponential and delta exponential"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>[[Relationship between nabla exponential and delta exponential|Theorem]]:</strong> If $p$ is [[continuous]] and $\nu$-regressive then
 
<strong>[[Relationship between nabla exponential and delta exponential|Theorem]]:</strong> If $p$ is [[continuous]] and $\nu$-regressive then
$$\hat{e}_p(t,s)=e_{\frac{q^{\sigma}}{1-q^{\sigma}\nu}}(t,s)=e_{\ominus(-q^{\sigma})}(t,s),$$
+
$$\hat{e}_p(t,s)=e_{\frac{p^{\sigma}}{1-p^{\sigma}\nu}}(t,s)=e_{\ominus(-p^{\sigma})}(t,s),$$
where $\hat{e}$ denotes the [[nabla exponential|$\nabla$-exponential]] and $e_p$ denotes the [[Delta exponential|$\Delta$-exponential]].
+
where $\hat{e}_p$ denotes the [[nabla exponential|$\nabla$-exponential]] and $e_p$ denotes the [[Delta exponential|$\Delta$-exponential]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 09:26, 12 April 2015

Theorem: If $p$ is continuous and $\nu$-regressive then $$\hat{e}_p(t,s)=e_{\frac{p^{\sigma}}{1-p^{\sigma}\nu}}(t,s)=e_{\ominus(-p^{\sigma})}(t,s),$$ where $\hat{e}_p$ denotes the $\nabla$-exponential and $e_p$ denotes the $\Delta$-exponential.

Proof: