Difference between revisions of "Delta Bernoulli inequality"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>Theorem:</strong> Let $\alpha \in \mathbb{R}$ be a [[Regressive_function | positively regressive]] constant. Then
+
Let $\alpha \in \mathbb{R}$ be a [[Regressive_function | positively regressive]] constant. Then
 
$$e_{\alpha} \geq 1 + \alpha(t-s)$$
 
$$e_{\alpha} \geq 1 + \alpha(t-s)$$
 
for all $t,s \in \mathbb{T}$.
 
for all $t,s \in \mathbb{T}$.
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
 
</div>
 
  
 
==References==
 
==References==

Revision as of 23:35, 14 September 2016

Theorem

Let $\alpha \in \mathbb{R}$ be a positively regressive constant. Then $$e_{\alpha} \geq 1 + \alpha(t-s)$$ for all $t,s \in \mathbb{T}$.

Proof

References

R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey

$\Delta$-Inequalities

Bernoulli Bihari Cauchy-Schwarz Gronwall Hölder Jensen Lyapunov Markov Minkowski Opial Tschebycheff Wirtinger