Difference between revisions of "Delta Opial inequality"
From timescalewiki
m (Tom moved page Opial inequality to Delta Opial inequality) |
|||
Line 10: | Line 10: | ||
==References== | ==References== | ||
[http://www.math.unl.edu/~apeterson1/pub/ineq.pdf R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey] | [http://www.math.unl.edu/~apeterson1/pub/ineq.pdf R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey] | ||
+ | |||
+ | {{:Delta inequalities footer}} |
Revision as of 23:38, 28 March 2015
Theorem: For a differentiable $x \colon [0,h] \cap \mathbb{T} \rightarrow \mathbb{R}$ with $x(0)=0$ we have $$\displaystyle\int_0^h |(x+x^{\sigma})x^{\Delta}|(t) \Delta t \leq h \displaystyle\int_0^h |x^{\Delta}|^2(t) \Delta t,$$ with equality when $x(t)=ct$.
Proof: █
References
R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey
$\Delta$-Inequalities
Bernoulli | Bihari | Cauchy-Schwarz | Gronwall | Hölder | Jensen | Lyapunov | Markov | Minkowski | Opial | Tschebycheff | Wirtinger |