Difference between revisions of "Diamond alpha Minkowski's inequality"
From timescalewiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> Let $\mathbb{T}$ be a time scale with $a,b \in \mathbb{T}$, $a<b$ and $p...") |
|||
Line 6: | Line 6: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
+ | =References= | ||
+ | [http://arxiv.org/pdf/0712.1680.pdf] |
Revision as of 12:32, 28 March 2015
Theorem: Let $\mathbb{T}$ be a time scale with $a,b \in \mathbb{T}$, $a<b$ and $p>1$. For continuous functions $f,g \colon [a,b]\cap \mathbb{T}\rightarrow \mathbb{R}$ we have $$\left( \displaystyle\int_a^b |(f+g)(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}}\leq \left( \displaystyle\int_a^b |f(x)|^p\Diamond_{\alpha}x \right)^{\frac{1}{p}}+ \left( \displaystyle\int_a^b |g(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}}.$$
Proof: █