Difference between revisions of "Joint time scales probability density function"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $\mathbb{T}$ be a time scale. Let $X$ and $Y$ be random variables. We say that $f_{X,Y}(x,y)$ is a joint time scales probability density function if # $f_{X,Y}(x,y) \g...")
 
 
Line 2: Line 2:
 
# $f_{X,Y}(x,y) \geq 0$ for all $x,y \in \mathbb{T}$
 
# $f_{X,Y}(x,y) \geq 0$ for all $x,y \in \mathbb{T}$
 
# $\displaystyle\int_0^{\infty} \int_0^{\infty}  f_{X,Y}(x,y) \Delta y \Delta x=1$.
 
# $\displaystyle\int_0^{\infty} \int_0^{\infty}  f_{X,Y}(x,y) \Delta y \Delta x=1$.
 +
 +
=References=
 +
[https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/29595/Matthews_2011.pdf?sequence=1 Probability theory on time scales and applications to finance and inequalities by Thomas Matthews]

Latest revision as of 04:37, 6 March 2015

Let $\mathbb{T}$ be a time scale. Let $X$ and $Y$ be random variables. We say that $f_{X,Y}(x,y)$ is a joint time scales probability density function if

  1. $f_{X,Y}(x,y) \geq 0$ for all $x,y \in \mathbb{T}$
  2. $\displaystyle\int_0^{\infty} \int_0^{\infty} f_{X,Y}(x,y) \Delta y \Delta x=1$.

References

Probability theory on time scales and applications to finance and inequalities by Thomas Matthews