Difference between revisions of "Nabla sinh"

From timescalewiki
Jump to: navigation, search
(Created page with "$$\widehat{\sinh}_p(t,s)=\dfrac{\hat{e}_{p}(t,s)+\hat{e}_{-p}(t,s)}{2}$$ =Properties= <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem...")
 
 
Line 16: Line 16:
 
=References=
 
=References=
 
[http://faculty.cord.edu/andersod/p20.pdf Nabla dynamic equations]
 
[http://faculty.cord.edu/andersod/p20.pdf Nabla dynamic equations]
 +
 +
{{:Nabla special functions footer}}

Latest revision as of 18:27, 21 March 2015

$$\widehat{\sinh}_p(t,s)=\dfrac{\hat{e}_{p}(t,s)+\hat{e}_{-p}(t,s)}{2}$$

Properties

Theorem: If $\alpha > 0$ with $\alpha^2\nu \in \mathcal{\nu}$, a regressive function, then $\widehat{\cosh}_{\gamma}(\cdot,s)$ and $\widehat{\sinh}_{\gamma}(\cdot,s)$ solve the $\nabla$ dynamic equation $$y^{\nabla \nabla}-\gamma^2 y=0.$$

Proof: proof goes here █

  1. $\widehat{\sinh}_p^{\nabla}(t,s)=p(t)\widehat{\cosh}_p(t,s)$
  2. $\widehat{\cosh}^2_p(t,s)-\widehat{\sinh}^2_p(t,s)=\hat{e}_{\nu p^2}(t,s)$
  3. $\widehat{\cosh}_p(t,s) + \widehat{\sinh}_p(t,s)=\hat{e}_p(t,s)$
  4. $\widehat{\cosh}_p(t,s)-\widehat{\sinh}_p(t,s)=\widehat{e}_{-p}(t,s)$

References

Nabla dynamic equations

$\nabla$-special functions on time scales

$\nabla$-$\widehat{\cos}_p$$\nabla$-$\widehat{\cosh}_p$$\nabla$-$\widehat{e}_p$$\nabla$-$h_k$$\nabla$-$g_k$$\nabla$-$\widehat{\sin}_p$$\nabla$-$\widehat{\sinh}_p$