Difference between revisions of "Nabla cosh"

From timescalewiki
Jump to: navigation, search
(Created page with "$$\hat{\cosh}_p(t,s)=\dfrac{\hat{e}_p(t,s)+\hat{e}_{-p}(t,s)}{2}$$ =Properties= <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</str...")
 
Line 1: Line 1:
$$\hat{\cosh}_p(t,s)=\dfrac{\hat{e}_p(t,s)+\hat{e}_{-p}(t,s)}{2}$$
+
$$\widehat{\cosh}_p(t,s)=\dfrac{\widehat{e}_p(t,s)+\widehat{e}_{-p}(t,s)}{2}$$
  
 
=Properties=
 
=Properties=
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>Theorem:</strong> If $\alpha > 0$ with $\alpha^2\nu \in \mathcal{\nu}$, a [[regressive function]], then $\hat{\cosh}_{\gamma}(\cdot,s)$ and $\hat{\sinh}_{\gamma}(\cdot,s)$ solve the $\nabla$ dynamic equation
+
<strong>Theorem:</strong> If $\alpha > 0$ with $\alpha^2\nu \in \mathcal{\nu}$, a [[regressive function]], then $\widehat{\cosh}_{\gamma}(\cdot,s)$ and $\widehat{\sinh}_{\gamma}(\cdot,s)$ solve the $\nabla$ dynamic equation
 
$$y^{\nabla \nabla}-\gamma^2 y=0.$$
 
$$y^{\nabla \nabla}-\gamma^2 y=0.$$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
<strong>Proof:</strong> proof goes here █  
+
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>
  
#$\hat{\cosh}_p^{\nabla}(t,s)=p(t)\hat{\sinh}_p(t,s)$, where $\hat{\sinh}$ is the [[Nabla sinh|$\nabla$-$\sinh$]] function.
+
#$\widehat{\cosh}_p^{\nabla}(t,s)=p(t)\widehat{\sinh}_p(t,s)$, where $\widehat{\sinh}$ is the [[Nabla sinh|$\nabla$-$\sinh$]] function.
#$\hat{\cosh}^2_p(t,s)-\hat{\sinh}^2_p(t,s)=\hat{e}_{\nu p^2}(t,s)$
+
#$\widehat{\cosh}^2_p(t,s)-\widehat{\sinh}^2_p(t,s)=\widehat{e}_{\nu p^2}(t,s)$
#$\hat{\cosh}_p(t,s)-\hat{\sinh}_p(t,s)=\hat{e}_{-p}(t,s)$
+
#$\widehat{\cosh}_p(t,s) + \widehat{\sinh}_p(t,s)=\hat{e}_p(t,s)$
 +
#$\widehat{\cosh}_p(t,s)-\widehat{\sinh}_p(t,s)=\widehat{e}_{-p}(t,s)$
 
=References=
 
=References=
 
[http://faculty.cord.edu/andersod/p20.pdf Nabla dynamic equations]
 
[http://faculty.cord.edu/andersod/p20.pdf Nabla dynamic equations]

Revision as of 04:30, 6 March 2015

$$\widehat{\cosh}_p(t,s)=\dfrac{\widehat{e}_p(t,s)+\widehat{e}_{-p}(t,s)}{2}$$

Properties

Theorem: If $\alpha > 0$ with $\alpha^2\nu \in \mathcal{\nu}$, a regressive function, then $\widehat{\cosh}_{\gamma}(\cdot,s)$ and $\widehat{\sinh}_{\gamma}(\cdot,s)$ solve the $\nabla$ dynamic equation $$y^{\nabla \nabla}-\gamma^2 y=0.$$

Proof:

  1. $\widehat{\cosh}_p^{\nabla}(t,s)=p(t)\widehat{\sinh}_p(t,s)$, where $\widehat{\sinh}$ is the $\nabla$-$\sinh$ function.
  2. $\widehat{\cosh}^2_p(t,s)-\widehat{\sinh}^2_p(t,s)=\widehat{e}_{\nu p^2}(t,s)$
  3. $\widehat{\cosh}_p(t,s) + \widehat{\sinh}_p(t,s)=\hat{e}_p(t,s)$
  4. $\widehat{\cosh}_p(t,s)-\widehat{\sinh}_p(t,s)=\widehat{e}_{-p}(t,s)$

References

Nabla dynamic equations