Difference between revisions of "Delta sine"
From timescalewiki
(Created page with "{| class="wikitable" |+Time Scale Sine Functions |- |$\mathbb{T}$ | |- | $\mathbb{R}$ |$\sin_p(t,s)= $ |- | $\mathbb{Z}$ |$\sin_p(t,s) = \dfra...") |
|||
Line 1: | Line 1: | ||
+ | Let $\mathbb{T}$ be a [[time_scale | time scale]] and let $t_0 \in \mathbb{T}$ and let $p \colon \mathbb{T} \rightarrow \mathbb{R}$ be a [[regressive_function | regressive function]]. We define the trigonometric function $\sin_p \colon \mathbb{T} \rightarrow \mathbb{R}$ by | ||
+ | $$\sin_p(t,t_0)=\dfrac{e_{ip}(t,t_0)-e_{-ip}(t,t_0)}{2i}$$ | ||
+ | |||
{| class="wikitable" | {| class="wikitable" | ||
|+Time Scale Sine Functions | |+Time Scale Sine Functions |
Revision as of 06:04, 1 March 2015
Let $\mathbb{T}$ be a time scale and let $t_0 \in \mathbb{T}$ and let $p \colon \mathbb{T} \rightarrow \mathbb{R}$ be a regressive function. We define the trigonometric function $\sin_p \colon \mathbb{T} \rightarrow \mathbb{R}$ by $$\sin_p(t,t_0)=\dfrac{e_{ip}(t,t_0)-e_{-ip}(t,t_0)}{2i}$$
$\mathbb{T}$ | |
$\mathbb{R}$ | $\sin_p(t,s)= $ |
$\mathbb{Z}$ | $\sin_p(t,s) = \dfrac{\displaystyle\prod_{k=t_0}^{t-1}1+ip(k) - \displaystyle\prod_{k=t_0}^{t-1}1-ip(k)}{2i}$ |
$h\mathbb{Z}$ | $\sin_p(t,s) = $ |
$\mathbb{Z}^2$ | $\sin_p(t,s) = $ |
$\overline{q^{\mathbb{Z}}}, q > 1$ | $\sin_p(t,s) = $ |
$\overline{q^{\mathbb{Z}}}, q < 1$ | $\sin_p(t,s) =$ |
$\mathbb{H}$ | $\sin_p(t,s) = $ |