Difference between revisions of "Variance"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 
Let $\mathbb{T}$ be a [[time scale]]. Let $X$ be a random variable with [[probability density function]] $f \colon \mathbb{T} \rightarrow \mathbb{R}$. Then the variance of $X$ is defined by the formula
 
Let $\mathbb{T}$ be a [[time scale]]. Let $X$ be a random variable with [[probability density function]] $f \colon \mathbb{T} \rightarrow \mathbb{R}$. Then the variance of $X$ is defined by the formula
 
$$\mathbb{V}ar_{\mathbb{T}}(X) = \dfrac{d^2 C_f}{dz^2}(0).$$
 
$$\mathbb{V}ar_{\mathbb{T}}(X) = \dfrac{d^2 C_f}{dz^2}(0).$$
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\mathbb{V}ar_{\mathbb{T}}(X) = \mathbb{E}_{\mathbb{T}}(X^2) - (\mathbb{E}_{\mathbb{T}}(X))^2.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> proof goes here █
 +
</div>
 +
</div>

Revision as of 17:24, 23 November 2014

Let $\mathbb{T}$ be a time scale. Let $X$ be a random variable with probability density function $f \colon \mathbb{T} \rightarrow \mathbb{R}$. Then the variance of $X$ is defined by the formula $$\mathbb{V}ar_{\mathbb{T}}(X) = \dfrac{d^2 C_f}{dz^2}(0).$$

Properties

Theorem: The following formula holds: $$\mathbb{V}ar_{\mathbb{T}}(X) = \mathbb{E}_{\mathbb{T}}(X^2) - (\mathbb{E}_{\mathbb{T}}(X))^2.$$

Proof: proof goes here █