Difference between revisions of "Moment generating function"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $\mathbb{T}$ be a time scale with $0 \in \mathbb{T}$ and $\sup \mathbb{T}=\infty$. Let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ be a probability density function. ...")
 
 
Line 1: Line 1:
 
Let $\mathbb{T}$ be a time scale with $0 \in \mathbb{T}$ and $\sup \mathbb{T}=\infty$. Let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ be a [[probability density function]]. The moment generating function of $f$ is defined to be
 
Let $\mathbb{T}$ be a time scale with $0 \in \mathbb{T}$ and $\sup \mathbb{T}=\infty$. Let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ be a [[probability density function]]. The moment generating function of $f$ is defined to be
 
$$M_f(z) = \displaystyle\int_0^{\infty} f(t) e_z(t,0) \Delta t.$$
 
$$M_f(z) = \displaystyle\int_0^{\infty} f(t) e_z(t,0) \Delta t.$$
 +
 +
=References=
 +
[https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/29595/Matthews_2011.pdf?sequence=1 Probability theory on time scales and applications to finance and inequalities by Thomas Matthews]

Latest revision as of 17:26, 23 November 2014

Let $\mathbb{T}$ be a time scale with $0 \in \mathbb{T}$ and $\sup \mathbb{T}=\infty$. Let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ be a probability density function. The moment generating function of $f$ is defined to be $$M_f(z) = \displaystyle\int_0^{\infty} f(t) e_z(t,0) \Delta t.$$

References

Probability theory on time scales and applications to finance and inequalities by Thomas Matthews