Difference between revisions of "Integers"
From timescalewiki
Line 4: | Line 4: | ||
|+$\mathbb{T}=\mathbb{Z}$ | |+$\mathbb{T}=\mathbb{Z}$ | ||
|- | |- | ||
− | | | + | |[[Forward jump]]: |
− | |||
− | |||
− | |||
|$\sigma(t)=t+1$ | |$\sigma(t)=t+1$ | ||
|- | |- | ||
− | | | + | |[[Forward graininess]]: |
|$\mu(t)=1$ | |$\mu(t)=1$ | ||
+ | |- | ||
+ | |[[Backward jump]]: | ||
+ | |$\rho(t)=t-1$ | ||
+ | |- | ||
+ | |[[Backward graininess]]: | ||
+ | |$\nu(t)=1$ | ||
|- | |- | ||
|[[Delta_derivative | $\Delta$-derivative]] | |[[Delta_derivative | $\Delta$-derivative]] | ||
Line 20: | Line 23: | ||
|- | |- | ||
|[[Delta_integral | $\Delta$-integral]] | |[[Delta_integral | $\Delta$-integral]] | ||
− | | | + | | $\int_s^t f(\tau) \Delta \tau = \left\{ \begin{array}{ll} |
\sum_{k=s}^{t-1} f(k) &; t > s \\ | \sum_{k=s}^{t-1} f(k) &; t > s \\ | ||
0 &; t=s \\ | 0 &; t=s \\ | ||
-\sum_{k=t}^{s-1} f(k) &; t < s | -\sum_{k=t}^{s-1} f(k) &; t < s | ||
− | \end{array} \right. | + | \end{array} \right.$ |
|- | |- | ||
|[[Nabla integral | $\nabla$-integral]] | |[[Nabla integral | $\nabla$-integral]] | ||
Line 34: | Line 37: | ||
|- | |- | ||
|[[Delta exponential | $\Delta$-exponential]] | |[[Delta exponential | $\Delta$-exponential]] | ||
− | | | + | | [[Derivation of delta e sub p on T=Z|derivation]] |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
|[[Nabla exponential | $\nabla$-exponential]] | |[[Nabla exponential | $\nabla$-exponential]] |
Revision as of 19:31, 29 April 2015
The set $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$ of integers is a time scale.
Forward jump: | $\sigma(t)=t+1$ |
Forward graininess: | $\mu(t)=1$ |
Backward jump: | $\rho(t)=t-1$ |
Backward graininess: | $\nu(t)=1$ |
$\Delta$-derivative | $f^{\Delta}(t)=f(t+1)-f(t)$ |
$\nabla$-derivative | $f^{\nabla}(t)=f(t)-f(t-1)$ |
$\Delta$-integral | $\int_s^t f(\tau) \Delta \tau = \left\{ \begin{array}{ll} \sum_{k=s}^{t-1} f(k) &; t > s \\ 0 &; t=s \\ -\sum_{k=t}^{s-1} f(k) &; t < s \end{array} \right.$ |
$\nabla$-integral | $$\int_s^t f(\tau) \nabla \tau = \left\{ \begin{array}{ll} \displaystyle\sum_{k=s+1}^t f(k) &; t>s \\ 0 &; t=s \\ -\sum_{k=t+1}^s f(k) &; t<s \end{array} \right.$$ |
$\Delta$-exponential | derivation |
$\nabla$-exponential | |
$\mathrm{sin}_p(t,0)$ | $$\begin{array}{ll} \sin_p(t,t_0) &= \dfrac{e_{ip}(t,t_0)-e_{-ip}(t,t_0)}{2i} \\ &= \dfrac{\displaystyle\prod_{k=t_0}^{t-1}1+ip(k) - \displaystyle\prod_{k=t_0}^{t-1}1-ip(k)}{2i} \end{array}$$ |
$\mathrm{sin}_1(t,0)$ | $$\begin{array}{ll} \sin_1(t,0) &= \dfrac{(1+i)^{t}-(1-i)^{t}}{2i} \\ &= \dfrac{\displaystyle\sum_{k=0}^{t} {t \choose k} i^k - \displaystyle\sum_{k=0}^{t} (-1)^k {t \choose k} i^k}{2i} \end{array}$$ |
$\mathrm{cos}_p(t,t_0)$ | $$\begin{array}{ll} \cos_p(t,t_0) &= \dfrac{e_{ip}(t,t_0)+e_{-ip}(t,t_0)}{2} \\ &= \dfrac{\displaystyle\prod_{k=t_0}^{t-1}1+ip(k) + \displaystyle\prod_{k=t_0}^{t-1}1-ip(k)}{2} \end{array}$$ |
$\mathrm{cos}_1(t,0)$ | \begin{array}{ll} \cos_1(t,0) &= \dfrac{(1+i)^{t}+(1-i)^{t}}{2} \\ &= \dfrac{\displaystyle\sum_{k=0}^{t} {t \choose k} i^k + \displaystyle\sum_{k=0}^{t} (-1)^k {t \choose k} i^k}{2} \end{array} |
Hilger circle | |
Gamma function: | $\Gamma_{\mathbb{Z}}(t;s)=\displaystyle\sum_{k=0}^{\infty} \left( \displaystyle\prod_{j=s}^{k-1} \dfrac{j+x}{j+1} \right) \dfrac{1}{2^{k+1}}$ |