Difference between revisions of "Time scale"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
A ''time scale'' is a set $\mathbb{T} \subset \mathbb{R}$.
+
A ''time scale'' is a set $\mathbb{T} \subset \mathbb{R}$ which is closed under the standard topology of $\mathbb{R}$. Given a time scale we define the ''jump operator'' $\sigma \colon \mathbb{T} \rightarrow \mathbb{T}$ by the formula
 +
$$\sigma(t) := \inf \left\{ x \in \mathbb{T} \colon x > t \right\}.$$
 +
The ''graininess operator'' is the function $\mu \colon \mathbb{T} \rightarrow \mathbb{R}^+ \cup \{0\}$ is defined by the formula
 +
$$\mu(t) := \sigma(t)-t.$$
 +
 
 +
== Examples of time scales ==
 +
# The real line $\mathbb{R}$
 +
# The integers $\mathbb{Z} = \{\ldots, -1,0,1,\ldots\}$
 +
# Multiples of integers $h\mathbb{Z} = \{ht \colon t \in \mathbb{Z}\}$

Revision as of 02:35, 18 May 2014

A time scale is a set $\mathbb{T} \subset \mathbb{R}$ which is closed under the standard topology of $\mathbb{R}$. Given a time scale we define the jump operator $\sigma \colon \mathbb{T} \rightarrow \mathbb{T}$ by the formula $$\sigma(t) := \inf \left\{ x \in \mathbb{T} \colon x > t \right\}.$$ The graininess operator is the function $\mu \colon \mathbb{T} \rightarrow \mathbb{R}^+ \cup \{0\}$ is defined by the formula $$\mu(t) := \sigma(t)-t.$$

Examples of time scales

  1. The real line $\mathbb{R}$
  2. The integers $\mathbb{Z} = \{\ldots, -1,0,1,\ldots\}$
  3. Multiples of integers $h\mathbb{Z} = \{ht \colon t \in \mathbb{Z}\}$