Difference between revisions of "Delta Lyapunov inequality"
From timescalewiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> Let $p \colon \mathbb{T} \rightarrow \mathbb{R}^+$ be positive-valued and [c...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
− | <strong>Theorem:</strong> Let $p \colon \mathbb{T} \rightarrow \mathbb{R}^+$ be positive-valued and [continuity | rd-continuous]. If the [[Sturm-Liouville dynamic equation]] | + | <strong>Theorem:</strong> Let $p \colon \mathbb{T} \rightarrow \mathbb{R}^+$ be positive-valued and [[continuity | rd-continuous]]. If the [[Sturm-Liouville dynamic equation]] |
$$x^{\Delta^2} + p(t) x^{\sigma} = 0$$ | $$x^{\Delta^2} + p(t) x^{\sigma} = 0$$ | ||
has a nontrivial solution $x$ with $x(a)=x(b)=0$, then the Lyapunov inequality | has a nontrivial solution $x$ with $x(a)=x(b)=0$, then the Lyapunov inequality |
Revision as of 07:12, 10 September 2014
Theorem: Let $p \colon \mathbb{T} \rightarrow \mathbb{R}^+$ be positive-valued and rd-continuous. If the Sturm-Liouville dynamic equation $$x^{\Delta^2} + p(t) x^{\sigma} = 0$$ has a nontrivial solution $x$ with $x(a)=x(b)=0$, then the Lyapunov inequality $$\displaystyle\int_a^b p(t) \Delta t \geq \dfrac{b-a}{f(d)}$$ holds, where $f \colon \mathbb{T} \rightarrow \mathbb{R}$ is defined by $$f(t) = (t-a)(b-t)$$ and $d \in \mathbb{T}$ is such that $$\left| \dfrac{a+b}{2} - d \right| = \min \left\{ \left| \dfrac{a+b}{2} -s \right| \colon s \in [a,b] \cap \mathbb{T} \right\}.$$
Proof: █
References
R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey