Difference between revisions of "Real numbers"
From timescalewiki
Line 10: | Line 10: | ||
|$\mu(t)=0$ | |$\mu(t)=0$ | ||
|- | |- | ||
− | |$\Delta$-derivative: | + | |[[Delta_derivative | $\Delta$-derivative:]] |
|$f^{\Delta}(t)=\displaystyle\lim_{h\rightarrow 0} \dfrac{f(t+h)-f(t)}{h}$ | |$f^{\Delta}(t)=\displaystyle\lim_{h\rightarrow 0} \dfrac{f(t+h)-f(t)}{h}$ | ||
|- | |- | ||
− | |$\Delta$-integral: | + | |[[Delta_integral | $\Delta$-integral:]] |
| $\displaystyle\int_s^t f(\tau) \Delta \tau = \displaystyle\int_s^t f(\tau) d\tau$ is the Riemann integral | | $\displaystyle\int_s^t f(\tau) \Delta \tau = \displaystyle\int_s^t f(\tau) d\tau$ is the Riemann integral | ||
|- | |- | ||
− | |Exponential function: | + | |[[Exponential_functions | Exponential function]]: |
| $\begin{array}{ll} | | $\begin{array}{ll} | ||
e_p(t,s) &= \exp \left( \displaystyle\int_s^t \displaystyle\lim_{h \rightarrow 0} \dfrac{1}{h} \log(1 + hp(\tau)) d\tau \right) \\ | e_p(t,s) &= \exp \left( \displaystyle\int_s^t \displaystyle\lim_{h \rightarrow 0} \dfrac{1}{h} \log(1 + hp(\tau)) d\tau \right) \\ |
Revision as of 03:37, 18 May 2014
The set $\mathbb{R}$ of real numbers is a time scale.
Jump operator: | $\sigma(t)=t$ |
Graininess operator: | $\mu(t)=0$ |
$\Delta$-derivative: | $f^{\Delta}(t)=\displaystyle\lim_{h\rightarrow 0} \dfrac{f(t+h)-f(t)}{h}$ |
$\Delta$-integral: | $\displaystyle\int_s^t f(\tau) \Delta \tau = \displaystyle\int_s^t f(\tau) d\tau$ is the Riemann integral |
Exponential function: | $\begin{array}{ll} e_p(t,s) &= \exp \left( \displaystyle\int_s^t \displaystyle\lim_{h \rightarrow 0} \dfrac{1}{h} \log(1 + hp(\tau)) d\tau \right) \\ &\hspace{-10pt} \stackrel{\mathrm{L'Hôpital}}{=} \exp \left( \displaystyle\int_s^t \displaystyle\lim_{h \rightarrow 0} \dfrac{1}{1+hp(\tau)} p(\tau) d\tau \right) \\ &= \exp \left( \displaystyle\int_s^t p(\tau) d \tau \right) \end{array}$ |