Difference between revisions of "Forward circle minus"
From timescalewiki
Line 1: | Line 1: | ||
Let $\mathbb{T}$ be a [[time scale]] and let $p,q \in \mathcal{R}(\mathbb{T},\mathbb{C})$ be [[forward regressive function| (forward) regressive functions ]]. We define the (forward) circle minus operation $\ominus_{\mu} \colon \mathbb{T} \rightarrow \mathbb{T}$ by | Let $\mathbb{T}$ be a [[time scale]] and let $p,q \in \mathcal{R}(\mathbb{T},\mathbb{C})$ be [[forward regressive function| (forward) regressive functions ]]. We define the (forward) circle minus operation $\ominus_{\mu} \colon \mathbb{T} \rightarrow \mathbb{T}$ by | ||
$$\left( \ominus_{\mu} p \right)(t) = \dfrac{-p(t)}{1+p(t)\mu(t)}.$$ | $$\left( \ominus_{\mu} p \right)(t) = \dfrac{-p(t)}{1+p(t)\mu(t)}.$$ | ||
− | |||
− | |||
=Properties= | =Properties= |
Revision as of 15:25, 21 January 2023
Let $\mathbb{T}$ be a time scale and let $p,q \in \mathcal{R}(\mathbb{T},\mathbb{C})$ be (forward) regressive functions . We define the (forward) circle minus operation $\ominus_{\mu} \colon \mathbb{T} \rightarrow \mathbb{T}$ by $$\left( \ominus_{\mu} p \right)(t) = \dfrac{-p(t)}{1+p(t)\mu(t)}.$$
Properties
Forward regressive functions form a group
Circle minus inverse of circle plus