Difference between revisions of "Cuchta-Georgiev Fourier transform of delta derivatives"

From timescalewiki
Jump to: navigation, search
 
Line 7: Line 7:
  
 
==References==
 
==References==
 +
*{{PaperReference|Analysis of the bilateral Laplace transform on time scales with applications|2021|Tom Cuchta|author2=Svetlin Georgiev|prev=|next=}}: Theorem 11
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 16:50, 15 January 2023

Theorem

If $f$ is $k$-times delta differentiable and for all $\ell \in \{0,\ldots,k-1\}$, $\displaystyle\lim_{t \rightarrow \pm \infty} f^{\Delta^{\ell}}(t)e_{\ominus iz}(t,s)=0$, then $$\mathcal{F}_{\mathbb{T}}\left\{f^{\Delta^k}\right\}(z;s) = (iz)^k \mathcal{F}_{\mathbb{T}}\{f\}(z;s),$$ where $\mathcal{F}_{\mathbb{T}}$ denotes the Cuchta-Georgiev Fourier transform.

Proof

References