Difference between revisions of "Cuchta-Georgiev Fourier transform of delta derivatives"

From timescalewiki
Jump to: navigation, search
(Created page with "==Theorem== If $f$ is $k$-times delta differentiable and for all $\ell \in \{0,\ldots,k-1\}$, $\displaystyle\lim_{t \rightarrow \pm \infty} f^{\Delta^{\el...")
 
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
If $f$ is $k$-times [[delta derivative|delta differentiable]] and for all $\ell \in \{0,\ldots,k-1\}$, $\displaystyle\lim_{t \rightarrow \pm \infty} f^{\Delta^{\ell}}(t)e_{\ominus iz}(t,s)=0$, then  
 
If $f$ is $k$-times [[delta derivative|delta differentiable]] and for all $\ell \in \{0,\ldots,k-1\}$, $\displaystyle\lim_{t \rightarrow \pm \infty} f^{\Delta^{\ell}}(t)e_{\ominus iz}(t,s)=0$, then  
$$\mathcal{F}_{\mathbb{T}}\left\{f^{\Delta^k}\right\}(z;s) = (iz)^k \mathcal{F}_{\mathbb{T}}\{f\}(z;s).$$
+
$$\mathcal{F}_{\mathbb{T}}\left\{f^{\Delta^k}\right\}(z;s) = (iz)^k \mathcal{F}_{\mathbb{T}}\{f\}(z;s),$$
 +
where $\mathcal{F}_{\mathbb{T}}$ denotes the [[Cuchta-Georgiev Fourier transform]].
  
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==
*{{PaperReference|A generalized Fourier transform and convolution on time scales|2008|Robert J. Marks II|author2=Ian A. Gravagne|author3=John M. Davis|prev=Marks-Gravagne-Davis Fourier transform|next=}}: Section 3 (3.1)
 
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Revision as of 16:49, 15 January 2023

Theorem

If $f$ is $k$-times delta differentiable and for all $\ell \in \{0,\ldots,k-1\}$, $\displaystyle\lim_{t \rightarrow \pm \infty} f^{\Delta^{\ell}}(t)e_{\ominus iz}(t,s)=0$, then $$\mathcal{F}_{\mathbb{T}}\left\{f^{\Delta^k}\right\}(z;s) = (iz)^k \mathcal{F}_{\mathbb{T}}\{f\}(z;s),$$ where $\mathcal{F}_{\mathbb{T}}$ denotes the Cuchta-Georgiev Fourier transform.

Proof

References