Difference between revisions of "Multiples of integers"
From timescalewiki
Line 27: | Line 27: | ||
|} | |} | ||
− | The set $\mathbb{C}_{\ | + | The set $\mathbb{C}_{\mu_*(t)}$ from the theory of [[Laplace_transform | Laplace transformations]] looks like |
[[File:Hilgercircle%2CT%3DhZ.png|250px|bla bla]] | [[File:Hilgercircle%2CT%3DhZ.png|250px|bla bla]] |
Revision as of 23:36, 15 July 2014
The set $h\mathbb{Z}=\{\ldots,-2h,-h,0,h,2h,\ldots\}$ of multiples of the integers is a time scale.
Generic element $t\in \mathbb{T}$: | For some $n \in \mathbb{Z}, t =hn$ |
Jump operator: | $\sigma(t)=t+h$ |
Graininess operator: | $\mu(t)=h$ |
$\Delta$-derivative: | $f^{\Delta}(t)=\dfrac{f(t+h)-f(t)}{h}$ |
$\Delta$-integral: | $\displaystyle\int_s^t f(\tau) \Delta \tau = \displaystyle\sum_{k=\frac{s}{h}}^{\frac{t}{h}-1} hf(hk)$ |
Exponential function: | $\begin{array}{ll} e_p(t,s) &= \exp \left( \displaystyle\int_{s}^{t} \dfrac{1}{\mu(\tau)} \log(1 + hp(\tau)) \Delta \tau \right) \\ &= \exp \left( \displaystyle\sum_{k=\frac{s}{h}}^{\frac{t}{h}-1} \log(1+hp(hk)) \right) \\ &= \displaystyle\prod_{k=\frac{s}{h}}^{\frac{t}{h}-1} \left( 1+hp(hk) \right) \\ \end{array}$ |
The set $\mathbb{C}_{\mu_*(t)}$ from the theory of Laplace transformations looks like