Difference between revisions of "Marks-Gravagne-Davis Fourier transform"
From timescalewiki
Line 4: | Line 4: | ||
=See also= | =See also= | ||
− | [Cuchta-Georgiev Fourier transform] | + | [[Cuchta-Georgiev Fourier transform]] |
=References= | =References= | ||
*{{PaperReference|A generalized Fourier transform and convolution on time scales|2008|Robert J. Marks II|author2=Ian A. Gravagne|author3=John M. Davis|prev=|next=}}: Section 3 | *{{PaperReference|A generalized Fourier transform and convolution on time scales|2008|Robert J. Marks II|author2=Ian A. Gravagne|author3=John M. Davis|prev=|next=}}: Section 3 | ||
[http://web.ecs.baylor.edu/faculty/gravagnei/archived/Fourier.pdf] | [http://web.ecs.baylor.edu/faculty/gravagnei/archived/Fourier.pdf] |
Revision as of 15:52, 15 January 2023
Let $\mathbb{T}$ be a time scale and let $s \in \mathbb{T}$. Let $f \colon \mathbb{T} \rightarrow \mathbb{C}$ be a function. Define the Fourier transform of $f$ centered at $s$ by $$\mathscr{F}\{f\}(z;s)=\displaystyle\int_{\mathbb{T}} f(\tau)e_{\ominus \mathring{\iota} 2 \pi z}(\tau,s) \Delta \tau,$$ where $\ominus$ denotes the circle minus operation, $e_{\ominus \mathring{\iota}2 \pi z}$ denotes the delta exponential, and $\mathring{\iota}$ denotes the Hilger pure imaginary.
See also
Cuchta-Georgiev Fourier transform