Difference between revisions of "Euler-Cauchy logarithm"

From timescalewiki
Jump to: navigation, search
Line 12: Line 12:
 
*{{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=Delta exponential dynamic equation|next=Bohner logarithm}}: $(2)$
 
*{{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=Delta exponential dynamic equation|next=Bohner logarithm}}: $(2)$
 
{{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm composed with forward jump|next=findme}}
 
{{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm composed with forward jump|next=findme}}
 +
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Revision as of 15:14, 21 January 2023

Let $\mathbb{T}$ be a time scale and let $s \in \mathbb{T}$. The Euler-Cauchy logarithm is defined by the formula $$L(t,s)=\displaystyle\int_{s}^t \dfrac{1}{\tau + 2\mu(\tau)} \Delta \tau.$$

Properties

See also

Euler-Cauchy dynamic equation
Jackson logarithm
Mozyrska-Torres logarithm

References

Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2008)... (previous)... (next)