Difference between revisions of "Mozyrska-Torres logarithm is positive on (1,infinity)"
From timescalewiki
Line 6: | Line 6: | ||
==References== | ==References== | ||
{{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyraska-Torres logarithm is negative on (0,1)|next=Mozyrska-Torres logarithm composed with forward jump}} | {{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyraska-Torres logarithm is negative on (0,1)|next=Mozyrska-Torres logarithm composed with forward jump}} | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 15:13, 21 January 2023
Theorem
Let $\mathbb{T}$ be a time scale. If $t \in (1,\infty) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) > 0$, where $L_{\mathbb{R}}$ denotes the Mozyrska-Torres logarithm.
Proof
References
Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2008)... (previous)... (next)