Difference between revisions of "Mozyrska-Torres logarithm is positive on (1,infinity)"
From timescalewiki
Line 1: | Line 1: | ||
==Theorem== | ==Theorem== | ||
− | Let $\mathbb{T}$ be a time scale. If $t \in (1,\infty) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) > 0$. | + | Let $\mathbb{T}$ be a time scale. If $t \in (1,\infty) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) > 0$, where $L_{\mathbb{R}}$ denotes the Mozyrska-Torres logarithm. |
==Proof== | ==Proof== |
Revision as of 15:22, 21 October 2017
Theorem
Let $\mathbb{T}$ be a time scale. If $t \in (1,\infty) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) > 0$, where $L_{\mathbb{R}}$ denotes the Mozyrska-Torres logarithm.
Proof
References
Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2009)... (previous)... (next)