Difference between revisions of "Mozyrska-Torres logarithm is positive on (1,infinity)"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
Let $\mathbb{T}$ be a time scale. If $t \in (1,\infty) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) > 0$.  
+
Let $\mathbb{T}$ be a time scale. If $t \in (1,\infty) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) > 0$, where $L_{\mathbb{R}}$ denotes the Mozyrska-Torres logarithm.
  
 
==Proof==
 
==Proof==

Revision as of 15:22, 21 October 2017

Theorem

Let $\mathbb{T}$ be a time scale. If $t \in (1,\infty) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) > 0$, where $L_{\mathbb{R}}$ denotes the Mozyrska-Torres logarithm.

Proof

References

Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2009)... (previous)... (next)