Difference between revisions of "Mozyraska-Torres logarithm is negative on (0,1)"

From timescalewiki
Jump to: navigation, search
(Created page with "==Theorem== Let $\mathbb{T}$ be a time scale. If $t \in (0,1) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) < 0$. ==Proof== ==References== {{PaperReference|The Natural Loga...")
 
Line 5: Line 5:
  
 
==References==
 
==References==
{{PaperReference|The Natural Logarithm on Time Scales|2009|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm is increasing|next=Mozyraska-Torres logarithm is positive on (1,infinity)}}
+
{{PaperReference|The Natural Logarithm on Time Scales|2009|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm is increasing|next=Mozyrska-Torres logarithm is positive on (1,infinity)}}

Revision as of 15:22, 21 October 2017

Theorem

Let $\mathbb{T}$ be a time scale. If $t \in (0,1) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) < 0$.

Proof

References

Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2009)... (previous)... (next)