Difference between revisions of "Jackson logarithm"
From timescalewiki
(→Properties) |
|||
Line 5: | Line 5: | ||
[[Jackson logarithm of delta exponential]]<br /> | [[Jackson logarithm of delta exponential]]<br /> | ||
[[Delta exponential of Jackson logarithm]]<br /> | [[Delta exponential of Jackson logarithm]]<br /> | ||
+ | [[Jackson logarithm of a product]]<br /> | ||
=See also= | =See also= |
Revision as of 17:37, 11 February 2017
Let $\mathbb{T}$ be a time scale. Let $p \in \mathcal{R}(\mathbb{T},\mathbb{R})$ be regressive. Let $g \colon \mathbb{T} \rightarrow \mathbb{R}$ be nonvanishing. Define the Jackson logarithm of $g$ by $$\log_{\mathbb{T}}g(t)=\dfrac{g^{\Delta}(t)}{g(t)}.$$
Properties
Jackson logarithm of delta exponential
Delta exponential of Jackson logarithm
Jackson logarithm of a product
See also
Bohner logarithm
Euler-Cauchy logarithm
Mozyrska-Torres logarithm
References
- Billy Jackson: The time scale logarithm (2008)... (previous)... (next): Definition 1.1, $(1.1)$