Difference between revisions of "Jackson logarithm"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
This definition attempts to define the logarithm as the inverse of an [[exponential_functions | exponential function]]. Let $\mathbb{T}$ be a time scale. Let $p \in \mathcal{R}(\mathbb{T},\mathbb{R})$ be [[regressive_function | regressive]]. Define $F \colon \mathcal{R}(\mathbb{T},\mathbb{R}) \rightarrow C_n^1(\mathbb{T},\mathbb{R})$ by $F(p)=e_p(t,s)$, where $C_n^1$ denotes nonvanishing continuously $\Delta$-differentible functions. Let $g \in C_n^1(\mathbb{T},\mathbb{R})$. Define
+
Let $\mathbb{T}$ be a time scale. Let $p \in \mathcal{R}(\mathbb{T},\mathbb{R})$ be [[regressive_function | regressive]]. Let $g \colon \mathbb{T} \rightarrow \mathbb{R}$ be nonvanishing. Define the Jackson logarithm of $g$ by
 
$$\log_{\mathbb{T}}g(t)=\dfrac{g^{\Delta}(t)}{g(t)}.$$
 
$$\log_{\mathbb{T}}g(t)=\dfrac{g^{\Delta}(t)}{g(t)}.$$
  
Line 34: Line 34:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
=See also=
 +
[[Bohner logarithm]]<br />
 +
[[Euler-Cauchy logarithm]]<br />
 +
[[Mozyrska-Torres logarithm]]<br />
  
 
=References=
 
=References=
 
*{{PaperReference|The time scale logarithm|2008|Billy Jackson|prev=findme|next=findme}}: $(1.1)$
 
*{{PaperReference|The time scale logarithm|2008|Billy Jackson|prev=findme|next=findme}}: $(1.1)$

Revision as of 17:26, 11 February 2017

Let $\mathbb{T}$ be a time scale. Let $p \in \mathcal{R}(\mathbb{T},\mathbb{R})$ be regressive. Let $g \colon \mathbb{T} \rightarrow \mathbb{R}$ be nonvanishing. Define the Jackson logarithm of $g$ by $$\log_{\mathbb{T}}g(t)=\dfrac{g^{\Delta}(t)}{g(t)}.$$

Properties

Theorem: The following formula holds: $$\log_{\mathbb{T}} e_p(t,s) = \dfrac{(e_p(t,s))^{\Delta}}{e_p(t,s)} = p(t).$$

Proof:

Theorem: For nonvanishing $\Delta$-differentiable functions $f,g$, $$\log_{\mathbb{T}} \dfrac{f(t)}{g(t)} = \log_{\mathbb{T}} f(t) \ominus \log_{\mathbb{T}} g(t).$$

Proof:

Theorem: If $f$ $\Delta$-differentiable nonvanishing function then $$e_{\log_{\mathbb{T}}f}(t,s)=\dfrac{f(t)}{f(s)}.$$

Proof:

Theorem: For nonvanishing $\Delta$-differentiable functions $f,g$, $$\log_{\mathbb{T}} f(t)g(t) = \log_{\mathbb{T}} f(t) \oplus \log_{\mathbb{T}} g(t).$$

Proof:

See also

Bohner logarithm
Euler-Cauchy logarithm
Mozyrska-Torres logarithm

References