Difference between revisions of "Bohner logarithm"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
Let $\mathbb{T}$ be a [[time scale]] and let $p \mathbb{T} \rightarrow \mathbb{C}$ [[delta derivative|delta differentiable]]. The Bohner logarithm is defined by
+
Let $\mathbb{T}$ be a [[time scale]] and let $p \colon \mathbb{T} \rightarrow \mathbb{C}$ [[delta derivative|delta differentiable]]. The Bohner logarithm is defined by
 
$$L_p(t,t_0) = \displaystyle\int_{t_0}^t \dfrac{p^{\Delta}(\tau)}{p(\tau)} \Delta \tau.$$
 
$$L_p(t,t_0) = \displaystyle\int_{t_0}^t \dfrac{p^{\Delta}(\tau)}{p(\tau)} \Delta \tau.$$
  

Revision as of 23:27, 10 February 2017

Let $\mathbb{T}$ be a time scale and let $p \colon \mathbb{T} \rightarrow \mathbb{C}$ delta differentiable. The Bohner logarithm is defined by $$L_p(t,t_0) = \displaystyle\int_{t_0}^t \dfrac{p^{\Delta}(\tau)}{p(\tau)} \Delta \tau.$$

Properties

Bohner logarithm sub a product

See also

Euler-Cauchy logarithm
Jackson logarithm
Mozyrska-Torres logarithm

References

Martin Bohner: The logarithm on time scales (2005)... (previous)... (next): (3)