Difference between revisions of "Forward regressive"
From timescalewiki
Line 1: | Line 1: | ||
Let $\mathbb{T}$ be a [[time_scale | time scale]]. Let $p \colon \mathbb{T} \rightarrow \mathbb{C}$. We say that $p$ is forward regressive if for all $t \in \mathbb{T}^{\kappa}$ | Let $\mathbb{T}$ be a [[time_scale | time scale]]. Let $p \colon \mathbb{T} \rightarrow \mathbb{C}$. We say that $p$ is forward regressive if for all $t \in \mathbb{T}^{\kappa}$ | ||
$$1+\mu(t)p(t)\neq 0.$$ | $$1+\mu(t)p(t)\neq 0.$$ | ||
+ | We call the set of forward regressive functions with domain $X$ and codomain $Y$ by $\mathcal{R}(X,Y)$. | ||
=See also= | =See also= |
Revision as of 22:38, 10 February 2017
Let $\mathbb{T}$ be a time scale. Let $p \colon \mathbb{T} \rightarrow \mathbb{C}$. We say that $p$ is forward regressive if for all $t \in \mathbb{T}^{\kappa}$ $$1+\mu(t)p(t)\neq 0.$$ We call the set of forward regressive functions with domain $X$ and codomain $Y$ by $\mathcal{R}(X,Y)$.