Difference between revisions of "Forward regressive"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 
Let $\mathbb{T}$ be a [[time_scale | time scale]]. Let $p \colon \mathbb{T} \rightarrow \mathbb{C}$. We say that $p$ is forward regressive if for all $t \in \mathbb{T}^{\kappa}$  
 
Let $\mathbb{T}$ be a [[time_scale | time scale]]. Let $p \colon \mathbb{T} \rightarrow \mathbb{C}$. We say that $p$ is forward regressive if for all $t \in \mathbb{T}^{\kappa}$  
 
$$1+\mu(t)p(t)\neq 0.$$
 
$$1+\mu(t)p(t)\neq 0.$$
 +
We call the set of forward regressive functions with domain $X$ and codomain $Y$ by $\mathcal{R}(X,Y)$.
  
 
=See also=
 
=See also=

Revision as of 22:38, 10 February 2017

Let $\mathbb{T}$ be a time scale. Let $p \colon \mathbb{T} \rightarrow \mathbb{C}$. We say that $p$ is forward regressive if for all $t \in \mathbb{T}^{\kappa}$ $$1+\mu(t)p(t)\neq 0.$$ We call the set of forward regressive functions with domain $X$ and codomain $Y$ by $\mathcal{R}(X,Y)$.

See also

References