Difference between revisions of "Isolated points"
From timescalewiki
Line 1: | Line 1: | ||
− | We say that | + | Let $\mathbb{T}$ be a [[time_scale | time scale]]. We say that $\mathbb{T}$ is a time scale of isolated points if there exists $\epsilon > 0$ such that for all $t \in \mathbb{T}$, $\mu(t) \geq \epsilon$. Let $\mathbb{T}=\{\ldots,t_{-1},t_0,t_1,\ldots\}$ be a [[time_scale | time scale]] of isolated points with $t_k > t_n$ iff $k>n$. Define the bijection $\pi \colon \mathbb{T} \rightarrow \mathbb{Z}$, $\pi(t_k)=k$. |
The set $h\mathbb{Z}=\{\ldots,-2h,-h,0,h,2h,\ldots\}$ of multiples of the integers is a [[time scale]]. | The set $h\mathbb{Z}=\{\ldots,-2h,-h,0,h,2h,\ldots\}$ of multiples of the integers is a [[time scale]]. |
Revision as of 01:03, 26 May 2014
Let $\mathbb{T}$ be a time scale. We say that $\mathbb{T}$ is a time scale of isolated points if there exists $\epsilon > 0$ such that for all $t \in \mathbb{T}$, $\mu(t) \geq \epsilon$. Let $\mathbb{T}=\{\ldots,t_{-1},t_0,t_1,\ldots\}$ be a time scale of isolated points with $t_k > t_n$ iff $k>n$. Define the bijection $\pi \colon \mathbb{T} \rightarrow \mathbb{Z}$, $\pi(t_k)=k$.
The set $h\mathbb{Z}=\{\ldots,-2h,-h,0,h,2h,\ldots\}$ of multiples of the integers is a time scale.
Generic element $t\in \mathbb{T}$: | For some $n \in \mathbb{Z}, t=t_n$ |
Jump operator: | $\sigma(t)=\sigma(t_n)=t_{n+1}$ |
Graininess operator: | $\mu(t)=\mu(t_n)=t_{n+1}-t_n$ |
$\Delta$-derivative: | $f^{\Delta}(t)=f^{\Delta}(t_n) = \dfrac{f(t_{n+1})-f(t_n)}{t_{n+1}-t_n}$ |
$\Delta$-integral: | |
Exponential function: |