Difference between revisions of "Delta derivative of quotient"

From timescalewiki
Jump to: navigation, search
 
Line 3: Line 3:
 
$$\left( \dfrac{f}{g} \right)^{\Delta}(t) = \dfrac{g(t)f^{\Delta}(t)-f(t)g^{\Delta}(t)}{g(t)g(\sigma(t))},$$
 
$$\left( \dfrac{f}{g} \right)^{\Delta}(t) = \dfrac{g(t)f^{\Delta}(t)-f(t)g^{\Delta}(t)}{g(t)g(\sigma(t))},$$
 
where $\sigma$ denotes the [[forward jump]].
 
where $\sigma$ denotes the [[forward jump]].
 +
 +
==Proof==
  
 
==References==
 
==References==
 
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Delta derivative of product (2)|next=Delta derivative of classical polynomial}}: Theorem 1.20 (v)
 
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Delta derivative of product (2)|next=Delta derivative of classical polynomial}}: Theorem 1.20 (v)
 +
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 05:44, 10 June 2016

Theorem

Let $\mathbb{T}$ be a time scale, $t \in \mathbb{T}^{\kappa}$, $f,g \colon \mathbb{T} \rightarrow \mathbb{R}$ delta differentiable, and $g(t)g(\sigma(t)) \neq 0$. Then $\dfrac{f}{g}$ is delta differentiable and $$\left( \dfrac{f}{g} \right)^{\Delta}(t) = \dfrac{g(t)f^{\Delta}(t)-f(t)g^{\Delta}(t)}{g(t)g(\sigma(t))},$$ where $\sigma$ denotes the forward jump.

Proof

References