Difference between revisions of "Delta derivative at right-dense"

From timescalewiki
Jump to: navigation, search
 
Line 8: Line 8:
 
==References==
 
==References==
 
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Delta derivative at right-scattered|next=Delta simple useful formula}}: Theorem 1.16 (iii)
 
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Delta derivative at right-scattered|next=Delta simple useful formula}}: Theorem 1.16 (iii)
 +
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 15:19, 21 January 2023

Theorem

Let $\mathbb{T}$ be a time scale, $t \in \mathbb{T}$ be right-dense. Then $f \colon \mathbb{T} \rightarrow \mathbb{R}$ is delta differentiable at $t$ if and only if the limit $$f^{\Delta}(t)=\displaystyle\lim_{s \rightarrow t} \dfrac{f(t)-f(s)}{t-s}$$ exists.

Proof

References