Difference between revisions of "Delta sine"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 +
__NOTOC__
 
Let $\mathbb{T}$ be a [[time_scale | time scale]], let $s \in \mathbb{T}$, and let $\mu p^2 \colon \mathbb{T} \rightarrow \mathbb{R}$ be a [[regressive_function | regressive function]]. We define the trigonometric function $\sin_p \colon \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{R}$ by
 
Let $\mathbb{T}$ be a [[time_scale | time scale]], let $s \in \mathbb{T}$, and let $\mu p^2 \colon \mathbb{T} \rightarrow \mathbb{R}$ be a [[regressive_function | regressive function]]. We define the trigonometric function $\sin_p \colon \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{R}$ by
 
$$\sin_p(t,s)=\dfrac{e_{ip}(t,s)-e_{-ip}(t,s)}{2i}$$
 
$$\sin_p(t,s)=\dfrac{e_{ip}(t,s)-e_{-ip}(t,s)}{2i}$$
Line 13: Line 14:
 
[[Derivative of Delta sine]]<br />
 
[[Derivative of Delta sine]]<br />
 
[[Sum of squares of delta cosine and delta sine]]<br />
 
[[Sum of squares of delta cosine and delta sine]]<br />
 
+
[[Derivative of delta cosine]]<br />
=Relation to other special functions=
 
{{:Derivative of delta cosine}}
 
  
 
=Examples=
 
=Examples=

Revision as of 01:59, 10 June 2016

Let $\mathbb{T}$ be a time scale, let $s \in \mathbb{T}$, and let $\mu p^2 \colon \mathbb{T} \rightarrow \mathbb{R}$ be a regressive function. We define the trigonometric function $\sin_p \colon \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{R}$ by $$\sin_p(t,s)=\dfrac{e_{ip}(t,s)-e_{-ip}(t,s)}{2i}$$


Properties

Derivative of Delta sine
Sum of squares of delta cosine and delta sine
Derivative of delta cosine

Examples

Time Scale Sine Functions
$\mathbb{T}$ $\sin$$_p(t,s)= $
$\mathbb{R}$
$\mathbb{Z}$ $\dfrac{\displaystyle\prod_{k=t_0}^{t-1}1+ip(k) - \displaystyle\prod_{k=t_0}^{t-1}1-ip(k)}{2i}$
$h\mathbb{Z}$
$\mathbb{Z}^2$
$\overline{q^{\mathbb{Z}}}, q > 1$
$\overline{q^{\mathbb{Z}}}, q < 1$
$\mathbb{H}$

$\Delta$-special functions on time scales


$\cos_p$

$\cosh_p$

$e_p$

$g_k$

$h_k$

$\sin_p$

$\sinh_p$