Difference between revisions of "Pythagorean identity for alternate delta trigonometric functions"

From timescalewiki
Jump to: navigation, search
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Pythagorean identity for alternate delta trigonometric functions|Theorem]]:</strong> Let $\mathbb{T}$ be a [[time scale]]. The following formula holds:
+
Let $\mathbb{T}$ be a [[time scale]]. The following formula holds:
 
$$\mathrm{c}_{pq}^2(t,s;\mathbb{T})+\mathrm{s}_{pq}^2(t,s;\mathbb{T})=1,$$
 
$$\mathrm{c}_{pq}^2(t,s;\mathbb{T})+\mathrm{s}_{pq}^2(t,s;\mathbb{T})=1,$$
 
where $\mathrm{c}_{pq}$ denotes the [[delta cpq|alternative delta cosine]] and $\mathrm{s}_{pq}$ denotes the [[delta spq|alternative delta sine]].
 
where $\mathrm{c}_{pq}$ denotes the [[delta cpq|alternative delta cosine]] and $\mathrm{s}_{pq}$ denotes the [[delta spq|alternative delta sine]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 00:41, 15 September 2016

Theorem

Let $\mathbb{T}$ be a time scale. The following formula holds: $$\mathrm{c}_{pq}^2(t,s;\mathbb{T})+\mathrm{s}_{pq}^2(t,s;\mathbb{T})=1,$$ where $\mathrm{c}_{pq}$ denotes the alternative delta cosine and $\mathrm{s}_{pq}$ denotes the alternative delta sine.

Proof

References