Difference between revisions of "Delta sine"
Line 11: | Line 11: | ||
=Properties= | =Properties= | ||
− | + | [[Derivative of Delta sine]]<br /> | |
− | + | [[Sum of squares of delta cosine and delta sine]]<br /> | |
=Relation to other special functions= | =Relation to other special functions= | ||
Line 21: | Line 21: | ||
<center>{{:Delta special functions footer}}</center> | <center>{{:Delta special functions footer}}</center> | ||
+ | |||
+ | [[Category:specialfunction]] |
Revision as of 21:24, 9 June 2016
Let $\mathbb{T}$ be a time scale, let $s \in \mathbb{T}$, and let $\mu p^2 \colon \mathbb{T} \rightarrow \mathbb{R}$ be a regressive function. We define the trigonometric function $\sin_p \colon \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{R}$ by $$\sin_p(t,s)=\dfrac{e_{ip}(t,s)-e_{-ip}(t,s)}{2i}$$
Contents
Properties
Derivative of Delta sine
Sum of squares of delta cosine and delta sine
Relation to other special functions
Theorem
The following formula holds: $$\cos_p^{\Delta}(t,t_0)=-p(t)\sin_p(t,t_0),$$ where $\cos^{\Delta}_p$ denotes the delta derivative of the delta cosine function and $\sin_p$ denotes the delta sine function.
Proof
Compute $$\begin{array}{ll} \cos_p^{\Delta}(t,t_0) &= \dfrac{1}{2} \dfrac{\Delta}{\Delta t} \Big(e_{ip}(t,t_0) + e_{-ip}(t,t_0) \Big) \\ &= \dfrac{ip}{2} (e_{ip}-e_{-ip}(t,t_0)) \\ &= -\dfrac{p}{2i} (e_{ip}-e_{-ip}(t,t_0)) \\ &= -\sin_p(t,t_0), \end{array}$$ as was to be shown. █
References
Examples
$\mathbb{T}$ | $\sin$$_p(t,s)= $ |
$\mathbb{R}$ | |
$\mathbb{Z}$ | $\dfrac{\displaystyle\prod_{k=t_0}^{t-1}1+ip(k) - \displaystyle\prod_{k=t_0}^{t-1}1-ip(k)}{2i}$ |
$h\mathbb{Z}$ | |
$\mathbb{Z}^2$ | |
$\overline{q^{\mathbb{Z}}}, q > 1$ | |
$\overline{q^{\mathbb{Z}}}, q < 1$ | |
$\mathbb{H}$ |
$\Delta$-special functions on time scales | ||||||
$\cos_p$ |
$\cosh_p$ |
$e_p$ |
$g_k$ |
$h_k$ |
$\sin_p$ |
$\sinh_p$ |