Difference between revisions of "Semigroup property of delta exponential"
From timescalewiki
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
− | <strong>[[Semigroup property of delta exponential|Theorem]]:</strong> Let $\mathbb{T}$ be a [[time scale]], $t,s \in \mathbb{T}$, and let $p \in \mathcal{R}\left( \mathbb{T},\mathbb{C} \right)$ be a [[regressive function]]. The following formula holds: | + | <strong>[[Semigroup property of delta exponential|Theorem]]:</strong> Let $\mathbb{T}$ be a [[time scale]], let $t,s \in \mathbb{T}$, and let $p \in \mathcal{R}\left( \mathbb{T},\mathbb{C} \right)$ be a [[regressive function]]. The following formula holds: |
$$e_p(t,r;\mathbb{T})e_p(r,s;\mathbb{T})=e_p(t,s;\mathbb{T}),$$ | $$e_p(t,r;\mathbb{T})e_p(r,s;\mathbb{T})=e_p(t,s;\mathbb{T}),$$ | ||
where $e_p$ denotes the [[delta exponential]]. | where $e_p$ denotes the [[delta exponential]]. |
Revision as of 23:14, 31 May 2016
Theorem: Let $\mathbb{T}$ be a time scale, let $t,s \in \mathbb{T}$, and let $p \in \mathcal{R}\left( \mathbb{T},\mathbb{C} \right)$ be a regressive function. The following formula holds: $$e_p(t,r;\mathbb{T})e_p(r,s;\mathbb{T})=e_p(t,s;\mathbb{T}),$$ where $e_p$ denotes the delta exponential.
Proof: █