Difference between revisions of "Time scale"
Line 25: | Line 25: | ||
#Population model for flies [http://campus.mst.edu/ijde/contents/v8n2p1.pdf here] | #Population model for flies [http://campus.mst.edu/ijde/contents/v8n2p1.pdf here] | ||
#[http://www.sciencedirect.com/science/article/pii/S089396591100468X this] | #[http://www.sciencedirect.com/science/article/pii/S089396591100468X this] | ||
+ | |||
+ | =References= | ||
+ | * {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|next=Forward jump}}: Theorem 1.16 (i) |
Revision as of 06:05, 10 June 2016
A time scale is a set $\mathbb{T} \subset \mathbb{R}$ which is closed under the standard topology of $\mathbb{R}$. Sometimes we deal with the set $\mathbb{T}^{\kappa} = \mathbb{T} \setminus \left\{ \sup \mathbb{T} \right\}$ (if $\sup \mathbb{T}=\infty$ then $\mathbb{T}^{\kappa}=\mathbb{T}$). For some set $X$, let $f \colon \mathbb{T} \rightarrow X$. The following is a common notation using the forward jump operator: $f^{\sigma} \colon \mathbb{T}^{\kappa} \rightarrow X$ is given by the formula $f^{\sigma}(t)=f(\sigma(t))$. Similarly the backward jump is used to define the function $f^{\rho}$.
To every time scale we have "standard" calculus operators: the $\Delta$-derivative and $\Delta$-integral, however there are also different types of other derivatives and integrals such as the $\nabla$-derivative and the $\nabla$-integral.
Contents
The set of time scales
Let $\mathcal{H} = \{\mathbb{T} \subset \mathbb{R} \colon \mathbb{T}$ is a closed set $\}$. A set like this can be given a standard topological structure making it the hyperspace $\mathcal{H}=\mathrm{CL}(\mathbb{R})$. We can characterize time scales using the Cantor-Bendixson derivative -- a time scale $\mathbb{T}$ is the union of a perfect set and a countable set.
Examples of time scales
- The real line: $\mathbb{R}$
- The integers: $\mathbb{Z} = \{\ldots, -1,0,1,\ldots\}$
- Multiples of integers: $h\mathbb{Z} = \{ht \colon t \in \mathbb{Z}\}$
- Quantum numbers ($q>1$): $\overline{q^{\mathbb{Z}}}$
- Quantum numbers ($q<1$): $\overline{q^{\mathbb{Z}}}$
- Square integers: $\mathbb{Z}^2 = \{t^2 \colon t \in \mathbb{Z} \}$
- Harmonic numbers: $\mathbb{H}=\left\{\displaystyle\sum_{k=1}^n \dfrac{1}{k} \colon n \in \mathbb{Z}^+ \right\}$
- The closure of the unit fractions: $\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}$
- Isolated points: $\mathbb{T}=\{\ldots, t_{-1}, t_{0}, t_1, \ldots\}$
Applications of time scales
- Control theory, see this and this and this
- Economics, see this and this
- Ecology, see this
- Possible application to geophysics here
- Biological systems here
- Population model for flies here
- this
References
- Martin Bohner and Allan Peterson: Dynamic Equations on Time Scales (2001)... (next): Theorem 1.16 (i)